Next Article in Journal
Microstructure and Mechanical Properties of TiC0.7N0.3-HfC-WC-Ni-Mo Cermet Tool Materials
Previous Article in Journal
Testing and Optimizing a Stove-Powered Thermoelectric Generator with Fan Cooling
Article Menu
Issue 6 (June) cover image

Export Article

Open AccessArticle
Materials 2018, 11(6), 967; https://doi.org/10.3390/ma11060967

Type of Primary Nb5Si3 and Precipitation of Nbss in αNb5Si3 in a Nb-8.3Ti-21.1Si-5.4Mo-4W-0.7Hf (at.%) Near Eutectic Nb-Silicide-Based Alloy

Department of Materials Science and Engineering, The University of Sheffield, Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
*
Author to whom correspondence should be addressed.
Received: 1 May 2018 / Revised: 4 June 2018 / Accepted: 5 June 2018 / Published: 7 June 2018
Full-Text   |   PDF [4970 KB, uploaded 7 June 2018]   |  

Abstract

The Nb-silicide-based alloy of near eutectic composition (at.%) Nb-21.1Si-8.3Ti-5.4Mo-4W-0.7Hf (alloy CM1) was studied in the cast and heat-treated (1500 °C/100 h) conditions. The alloy was produced in the form of buttons and bars using three different methods, namely arc-melting, arc-melting and suction casting, and optical floating zone (OFZ) melting. In the former two cases the alloy solidified in water-cooled copper crucibles. Buttons and suction-cast bars of different size, respectively of 10 g and 600 g weight and 6 mm and 8 mm diameter, were produced. The OFZ bars were grown at three different growth rates of 12, 60 and 150 mm/h. It was confirmed that the type of Nb5Si3 formed in the cast microstructures depended on the solidification conditions. The primary phase in the alloy CM1 was the βNb5Si3. The transformation of βNb5Si3 to αNb5Si3 had occurred in the as cast large size button and the OFZ bars grown at the three different growth rates, and after the heat treatment of the small size button and the suction-cast bars of the alloy. This transformation was accompanied by subgrain formation in Nb5Si3 and the precipitation of Nbss in the large size as cast button and only by the precipitation of Nbss in the cast OFZ bars. Subgrains and precipitation of Nbss in αNb5Si3 was observed in the small size button and suction-cast bars after the heat treatment. Subgrains formed in αNb5Si3 after the heat treatment of the OFZ bars. The partitioning of solutes and in particular of Mo and Ti was key to this phase transformation. Subgrain formation was not necessary for precipitation of Nbss in αNb5Si3, but the partitioning of solutes was essential for this precipitation. View Full-Text
Keywords: Nb-silicide-based alloys; phase equilibria; solidification; intermetallics Nb-silicide-based alloys; phase equilibria; solidification; intermetallics
Figures

Figure 1a

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

McCaughey, C.; Tsakiropoulos, P. Type of Primary Nb5Si3 and Precipitation of Nbss in αNb5Si3 in a Nb-8.3Ti-21.1Si-5.4Mo-4W-0.7Hf (at.%) Near Eutectic Nb-Silicide-Based Alloy. Materials 2018, 11, 967.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Materials EISSN 1996-1944 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top