# Plasmon-Induced Transparency Based on Triple Arc-Ring Resonators

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Method

_{1}is 30 μm while the outer radius R

_{2}is 37 μm. In our coordinate, the angle along the x-axis is set as 0°. The two shorter arcs of the structure share the same angular range, which is 89° (88 to 177 and 183 to 272, respectively), while the longer arc ranges from −84° to 84°. The remaining parts between three arc rings are designed as air gaps. The thickness h

_{1}of the metallic layer is set as 0.2 μm and the conductivity is σ = 4.09 × 10

^{7}S/m. The thickness h

_{2}of the substrate is set as 640 μm and the relative refractive index of dielectric substrate is ε =1.5. Both metal and substrate are made of non-dispersive materials. The simulating results of the metamaterial are performed by the finite-difference time-domain method, in which the incident radiation is chosen as a plane wave with a y-axis polarized electric field, as shown in Figure 1b.

## 3. Simulation Results and Discussion

## 4. Theory Analyze

_{z}) shown in Figure 5a,b.

**H**

_{z}| of the structure resonating around 1.06 THz. A surface current flows clockwise on left arcs. Another strong surface current flows anticlockwise on Part B around 1.78 THz. At 1.32 THz, two opposite current flows destructively interfered with each other, which leads to the weakening effect of the surface current over part B of the structure, which directly gives rise to the transparent phenomena. This is the reason why two resonances may couple with each other and induce a transparent peak at 1.32 THz.

## 5. Potential Applications

^{5}or larger, the structure strongly forbids the transition of the incident wave of 1.32 THz. The variety from region pass to region stop permits an application of light switching.

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Smith, D.R.; Pendry, J.B.; Wiltshire, M.C.K. Metamaterials and negative refractive index. Science
**2004**, 305, 788–792. [Google Scholar] [CrossRef] - Soukoulis, C.M.; Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photon.
**2011**, 5, 523–530. [Google Scholar] [CrossRef] [Green Version] - Pendry, J.B.; Holden, A.J.; Robbins, D.J.; Stewart, W.J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech.
**1999**, 47, 2075–2084. [Google Scholar] [CrossRef] [Green Version] - Shelby, R.A.; Smith, D.R.; Schultz, S. Experimental verification of a negative index of refraction. Science
**2001**, 292, 77–79. [Google Scholar] [CrossRef] - Schurig, D.; Mock, J.J.; Justice, B.J.; Cummer, S.A.; Pendry, J.B.; Starr, A.F.; Smith, D.R. Metamaterial electromagnetic cloak at microwave frequencies. Science
**2006**, 314, 977–980. [Google Scholar] [CrossRef] [PubMed] - Yang, J.; Sauvan, C.; Liu, H.T.; Lalanne, P. Theory of fishnet negative-index optical metamaterials. Phys. Rev. Lett.
**2011**, 107, 043903. [Google Scholar] [CrossRef] - Dolling, G.; Enkrich, C.; Wegener, M.; Zhou, J.; Soukoulis, C.M.; Linden, S. Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. Opt. Lett.
**2005**, 30, 3198–3200. [Google Scholar] [CrossRef] [Green Version] - Grant, J.; McCrindle, I.J.H.; Cumming, D.R. Multi-spectral materials: Hybridisation of optical plasmonic filters, a mid infrared metamaterial absorber and a terahertz metamaterial absorber. Opt. Express
**2016**, 24, 3451–3463. [Google Scholar] [CrossRef] [PubMed] - Bayatpur, F.; Sarabandi, K. Multipole spatial filters using metamaterial-based miniaturized-element frequency-selective surfaces. IEEE Trans. Microw. Theory Tech.
**2008**, 56, 2742–2747. [Google Scholar] [CrossRef] - Wang, Z.L.; Hashimoto, K.; Shinohara, N.; Matsumoto, H. Frequency-selective surface for microwave power transmission. IEEE Trans. Microw. Theory Tech.
**1999**, 47, 2039–2042. [Google Scholar] [CrossRef] - Chang, W.S.; Lassiter, J.B.; Swanglap, P.; Sobhani, H.; Khatua, S.; Nordlander, P.; Halas, N.J.; Link, S. A Plasmonic Fano Switch. Nano Lett.
**2012**, 12, 4977–4982. [Google Scholar] [CrossRef] [PubMed] - Harris, S.E. Electromagnetically induced transparency. Phys. Today
**1997**, 50, 36–42. [Google Scholar] [CrossRef] - Wilson, E.A.; Manson, N.B.; Wei, C. Perturbing an electromagnetic induced transparency within an inhomogeneously broadened transition. Phys. Rev. A
**2003**, 67, 023812. [Google Scholar] [CrossRef] - Tassin, P.; Zhang, L.; Koschny, T.; Economou, E.N.; Soukoulis, C.M. Low-loss metamaterials based on classical electromagnetically induced transparency. Phys. Rev. Lett.
**2009**, 102, 053901. [Google Scholar] [CrossRef] [PubMed] - Papasimakis, N.; Fu, Y.H.; Fedotov, V.A.; Prosvirnin, S.L.; Tsai, D.P.; Zheludev, N.I. Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency. Appl. Phys. Lett.
**2009**, 94, 211902. [Google Scholar] [CrossRef] [Green Version] - Zhang, S.; Genov, D.A.; Wang, Y.; Liu, M.; Zhang, X. Plasmon-Induced Transparency in Metamaterials. Phys. Rev. Lett.
**2008**, 101, 047401. [Google Scholar] [CrossRef] [PubMed] - Zheng, X.; Zhao, Z.; Shi, W.; Peng, W. Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules. Opt. Mater. Express
**2017**, 7, 1035–1047. [Google Scholar] [CrossRef] - Yang, S.Y.; Xia, X.X.; Liu, Z.; Yiwen, E.; Wang, Y.J.; Tang, C.C.; Li, W.X.; Li, J.J.; Wang, L.; Gu, C.Z. Multispectral plasmon-induced transparency in hyperfine terahertz meta-molecules. J. Phys.
**2016**, 28, 445002. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Zhang, X.Q.; Li, Q.; Cao, W.; Gu, J.Q.; Singh, R.; Tian, Z.; Han, J.G.; Zhang, W.L. Polarization-Independent Plasmon-Induced Transparency in a Fourfold Symmetric Terahertz Metamaterial. IEEE J. Sel. Top. Quantum Electron.
**2013**, 19, 8400707. [Google Scholar] [CrossRef] - Luo, X.G.; Qiu, T.; Lu, W.B.; Ni, Z.H. Plasmons in graphene: Recent progress and applications. Mater. Sci. Eng. R Rep.
**2013**, 74, 351–376. [Google Scholar] [CrossRef] [Green Version] - He, X.Y. Tunable terahertz graphene metamaterials. Carbon
**2015**, 82, 229–237. [Google Scholar] [CrossRef] - Yan, X.; Yuan, L.; Wang, Y.K.; Sang, T.; Yang, G.F. Transmittance characteristics and tunable sensor performances of plasmonic graphene ribbons. AIP Adv.
**2016**, 6, 085301. [Google Scholar] [CrossRef] [Green Version] - Jablan, M.; Buljan, H.; Solja, M. Plasmonics in graphene at infra-red frequencies. Phys. Rev. B
**2009**, 80, 245435. [Google Scholar] [CrossRef] - Vasić, B.; Isić, G.; Gajić, R. Localized surface plasmon resonances in graphene ribbon arrays for sensing of dielectric environment at infrared frequencies. J. Appl. Phys.
**2013**, 113, 013110. [Google Scholar] [CrossRef] - Han, X.; Wang, T.; Li, X.M.; Xiao, S.Y.; Zhu, Y.J. Dynamically tunable plasmon induced transparency in a graphene-based nanoribbon waveguide coupled with graphene rectangular resonators structure on sapphire substrate. Opt. Express
**2015**, 23, 31945–31955. [Google Scholar] [CrossRef] [PubMed] - Shi, X.; Han, D.Z.; Dai, Y.Y.; Yu, Z.F.; Sun, Y.; Chen, H.; Liu, X.H.; Zi, J. Plasmonic analog of electromagnetically induced transparency in nanostructure graphene. Opt. Express
**2013**, 21, 28438–28443. [Google Scholar] [CrossRef] [PubMed] - Meng, F.Y.; Wu, Q.; Erni, D.; Wu, K.; Lee, J.C. Polarization-Independent Metamaterial Analog of Electromagnetically Induced Transparency for a Refractive-Index-Based Sensor. IEEE Trans. Microw. Theory Tech.
**2012**, 60, 3013–3022. [Google Scholar] [CrossRef] - Manjappa, M.; Chiam, S.Y.; Cong, L.Q.; Bettiol, A.A.; Zhang, W.L.; Singh, R. Tailoring the slow light behavior in terahertz metasurfaces. Appl. Phys. Lett.
**2015**, 106, 181101. [Google Scholar] [CrossRef] [Green Version] - Wang, B.X.; Wang, L.L.; Wang, G.Z.; Huang, W.Q.; Li, X.F.; Zhai, X. A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber. Appl. Phys. A
**2014**, 115, 1187–1192. [Google Scholar] [CrossRef] - Wang, B.X.; Xie, Q.; Dong, G.X.; Huang, W.Q. Design of triple-band polarization controlled terahertz metamaterial absorber. Superlattices Microstruct.
**2018**, 114, 225–232. [Google Scholar] [CrossRef] - Shen, N.H.; Kafesaki, M.; Koschny, T.; Zhang, L.; Economou, E.N.; Soukoulis, C.M. Broadband blueshift tunable metamaterials and dual-band switches. Phys. Rev. B
**2009**, 79, 161102. [Google Scholar] [CrossRef] - Chen, H.T.; O’hara, J.F.; Azad, A.K.; Taylor, A.J.; Averitt, R.D.; Shrekenhamer, D.B.; Padilla, W.J. Experimental demonstration of frequency-agile terahertz metamaterial. Nat. Photon.
**2008**, 2, 295–298. [Google Scholar] [CrossRef] - Xu, Z.C.; Gao, R.M.; Ding, C.F.; Wu, L.; Zhang, Y.T.; Xu, D.G.; Yao, J.Q. Photoexited switchable metamaterial absorber at terahertz frequencies. Opt. Commun.
**2015**, 344, 125–128. [Google Scholar] [CrossRef]

**Figure 1.**Cross section of the presented metallic three-arc-ring metamaterial (

**a**); top view of the metamaterial (

**b**); top view of Part A (

**c**); top view of part B (

**d**).

**Figure 2.**The transmission spectra of the metamaterial (

**a**) and the transmission spectrum of the metamaterial, Part A and Part B (

**b**).

**Figure 3.**The electric field (|

**E**|) distributions for the proposed structure at the resonance frequencies f

_{1}= 1.06 THz (

**a**), f

_{2}= 1.32 THz (

**b**), and f

_{3}= 1.78 THz (

**c**).

**Figure 4.**The transmission curve calculated by analytic model (black) as well as the simulated transmission curve (red).

**Figure 5.**The magnetic field (|

**H**

_{z}|) distributions for the proposed structure at the resonance frequencies of f

_{1}= 1.06 THz (

**a**) and f

_{2}= 1.78 THz (

**b**).

**Figure 6.**Dependence of the simulated transmission curves on the angular range of Part A (

**a**) and the transmission curves calculated by analytic model on the angular range of Part A (

**b**).

**Figure 7.**The structure with pump beam illuminated (

**a**) and the transmission spectra of the proposed structure under no pump beam (olive), σ = 1000 (orange), σ = 10,000 (violet) and σ = 100,000 (navy) (

**b**).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Dong, G.-X.; Xie, Q.; Zhang, Q.; Wang, B.-X.; Huang, W.-Q.
Plasmon-Induced Transparency Based on Triple Arc-Ring Resonators. *Materials* **2018**, *11*, 964.
https://doi.org/10.3390/ma11060964

**AMA Style**

Dong G-X, Xie Q, Zhang Q, Wang B-X, Huang W-Q.
Plasmon-Induced Transparency Based on Triple Arc-Ring Resonators. *Materials*. 2018; 11(6):964.
https://doi.org/10.3390/ma11060964

**Chicago/Turabian Style**

Dong, Guang-Xi, Qin Xie, Qi Zhang, Ben-Xin Wang, and Wei-Qing Huang.
2018. "Plasmon-Induced Transparency Based on Triple Arc-Ring Resonators" *Materials* 11, no. 6: 964.
https://doi.org/10.3390/ma11060964