Fatigue Behavior of Glass Fiber-Reinforced Polymer Bars after Elevated Temperatures Exposure
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Test Equipment
2.3. Experimental Design
2.4. Preparation of Specimens
2.5. Experiment Method
3. Test Features
3.1. The Appearances of GFRP Bars after Elevated Temperatures Exposure
3.2. Fatigue Failure Characteristics
4. Results and Discussion
4.1. Tensile Properties of GFRP Bars after Elevated Temperature Exposure
4.1.1. Effect of Elevated Temperature and Holding Time on Tensile Strength of GFRP Bars
4.1.2. Effect of Elevated Temperature and Holding Time on Elastic Modulus of GFRP Bars
4.2. Tensile Fatigue Properties of GFRP Bars after Elevated Temperatures Exposure
4.2.1. Influence of Cyclic Load on the Tensile Strength of GFRP Bars
4.2.2. Influence of Cyclic Load on the Elastic Modulus of GFRP Bars
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- American Concrete Institute (ACI). Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars, ACI 440.1R-15; ACI: Farmington Hills, MI, USA, 2015. [Google Scholar]
- Lees, J.M. Fiber-reinforced polymers in reinforced and prestressed concrete applications: Moving forward. Progr. Struct. Eng. Mater. 2001, 3, 122–131. [Google Scholar] [CrossRef]
- Canadian Standards Association. Design and Construction of Building Structures with Fibre-Reinforced Polymers, CSA S806–S12 (R2017); Canadian Standards Association: Mississauga, ON, Canada, 2017. [Google Scholar]
- Gattesco, N.; Amadio, C.; Bedon, C. Experimental and numerical study on the shear behavior of stone masonry walls strengthened with GFRP reinforced mortar coating and steel-cord reinforced repointing. Eng. Struc. 2015, 90, 143–157. [Google Scholar] [CrossRef] [Green Version]
- Correia, J.R.; Valarinho, L.; Branco, F.A. Post-cracking strength and ductility of glass–GFRP composite beams. Compos. Struc. 2011, 93, 2299–2309. [Google Scholar] [CrossRef]
- Gilfillan, J.R.; Gilbert, S.G.; Patrick, G.R.H. The use of FRP composites in enhancing the structural behavior of timber beams. J. Rein. Plastics Compos. 2003, 22, 1373–1388. [Google Scholar] [CrossRef]
- Custódio, J.; Cabral-Fonseca, S. Advanced fibre-reinforced polymer (FRP) composites for the rehabilitation of timber and concrete structures: Assessing strength and durability. In Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications; Bai, J., Ed.; Woodhead Publishing Limited: Sawston, Cambridge, UK, 2013; pp. 814–882. [Google Scholar] [CrossRef]
- Corradi, M.; Righetti, L.; Borri, A. Bond Strength of Composite CFRP Reinforcing Bars in Timber. Materials 2015, 8, 4034–4049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.K.; Zhao, X.L.; Xian, G.J.; Wu, G.; Singh Raman, R.K.; Al-Saadi, S. Effect of sustained load and seawater and sea sand concrete environment on durability of basalt- and glass-fibre reinforced polymer (B/GFRP) bars. Corros. Sci. 2018, 138, 200–218. [Google Scholar] [CrossRef]
- Akbarzadeh, H.; Maghsoudi, A.A. Experimental and analytical investigation of reinforced high strength concrete continuous beams strengthened with fiber reinforced polymer. Mater. Des. 2010, 31, 1130–1147. [Google Scholar] [CrossRef]
- Ibell, T.; Darby, A.; Denton, S. Research issues related to the appropriate use of FRP in concrete structures. Constr. Build. Mater. 2009, 23, 1521–1528. [Google Scholar] [CrossRef] [Green Version]
- Sakar, G.; Hawileh, R.A.; Naser, M.Z.; Abdalla, J.A.; Tanarslan, M. Nonlinear behavior of shear deficient RC beams strengthened with near surface mounted glass fiber reinforcement under cyclic loading. Mater. Des. 2014, 61, 16–25. [Google Scholar] [CrossRef]
- Almusallam, T.; Al-Salloum, Y. Durability of GFRP rebars in concrete beams under sustained loads at severe environments. J. Compos. Mater. 2006, 40, 623–637. [Google Scholar] [CrossRef]
- Al-Salloum, Y.; Almusallam, T. Creep effect on the behavior of concrete beams reinforced with GFRP bars subjected to different environments. Constr. Build. Mater. 2007, 21, 1510–1519. [Google Scholar] [CrossRef]
- Wu, G.; Lü, Z.T.; Wu, Z.S. Strength and ductility of concrete cylinders confined with FRP composites. Constr. Build. Mater. 2006, 20, 134–148. [Google Scholar] [CrossRef]
- Elgabbas, F.; Vincent, P.; Ahmed, E.A.; Benmokrane, B. Experimental testing of basalt-fiber-reinforced polymer bars in concrete beams. Compos. Part B Eng. 2016, 91, 205–218. [Google Scholar] [CrossRef]
- Goldston, M.; Remennikov, A.; Sheikh, M.N. Experimental investigation of the behaviour of concrete beams reinforced with GFRP bars under static and impact loading. Eng. Struct. 2016, 113, 220–232. [Google Scholar] [CrossRef] [Green Version]
- Santos, F.A.D.; Bedon, C. Preliminary experimental and Finite-Element numerical assessment of the structural performance of SMA-reinforced GFRP systems. Am. J. Eng. Appl. Sci. 2016, 9, 692–701. [Google Scholar] [CrossRef]
- Ashrafi, H.; Bazli, M.; Najafabadi, E.P.; Vatani Oskouei, A. The effect of mechanical and thermal properties of FRP bars on their tensile performance under elevated temperatures. Constr. Build. Mater. 2017, 157, 1001–1010. [Google Scholar] [CrossRef]
- Robert, M.; Benmokrane, B. Behavior of GFRP reinforcing bars subjected to extreme temperatures. J. Compos. Constr. 2010, 14, 353–360. [Google Scholar] [CrossRef]
- Ellis, D.S.; Tabatabai, H.; Nabizadeh, A. Residual tensile strength and bond properties of GFRP bars after exposure to elevated temperatures. Materials 2018, 11, 346. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Zha, X.X. Experimental research on mechanical behavior of GFRP bars under high temperature. Appl. Mech. Mater. 2011, 71, 3591–3594. [Google Scholar] [CrossRef]
- Alsayed, S.; Al-Salloum, Y.; Almusallam, T.; El-Gamal, S.; Aqel, M. Performance of glass fiber reinforced polymer bars under elevated temperatures. Compos. Part B Eng. 2012, 43, 2265–2271. [Google Scholar] [CrossRef]
- Wang, Y.C.; Wong, P.M.H.; Kodur, V. An experimental study of the mechanical properties of fiber reinforced polymer (FRP) and steel reinforcing bars at elevated temperatures. Compos. Struct. 2007, 80, 131–140. [Google Scholar] [CrossRef]
- Hamad, R.J.A.; Johari, M.A.M.; Haddad, R.H. Mechanical properties and bond characteristics of different fiber reinforced polymer rebars at elevated temperatures. Constr. Build. Mater. 2017, 142, 521–535. [Google Scholar] [CrossRef]
- Li, C.C.; Wang, Y.L.; Zhao, J.; Qian, H. Longitudinal tensile properties of FRP bars after high temperature. J. Build. Mater. 2014, 17, 1076–1081. [Google Scholar] [CrossRef]
- Gheorgiu, C.; Labossiere, P.; Proulx, J. Response of CFRP strengthened beams under fatigue with different load amplitudes. Constr. Build. Mater. 2007, 21, 756–763. [Google Scholar] [CrossRef]
- Wahab, N.; Soudki, K.A.; Topper, T. Mechanics of bond fatigue behavior of concrete beams strengthened with NSM CFRP rods. J. Compos. Constr. 2011, 15, 934–942. [Google Scholar] [CrossRef]
- Ferrier, E.; Bigaud, D.; Clément, J.C.; Hamelin, P. Fatigue loading effect on RC beams strengthened with externally bonded FRP. Constr. Build. Mater. 2011, 25, 539–546. [Google Scholar] [CrossRef] [Green Version]
- Charalambidi, B.G.; Rousakis, T.C.; Karabinis, A. Analysis of the fatigue behavior of reinforced concrete beams strengthened in flexure with fiber reinforced polymer laminates. Compos. Part B Eng. 2016, 96, 69–78. [Google Scholar] [CrossRef]
- Sena-Cruz, J.M.; Barros, J.A.O.; Coelho, M.R.F.; Silva, L.F.F.T. Efficiency of different techniques in flexural strengthening of RC beams under monotonic and fatigue loading. Constr. Build. Mater. 2011, 29, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Triantafyllou, G.G.; Rousakis, T.C.; Karabinis, A.I. Corroded RC beams patch repaired and strengthened in flexure with fiber-reinforced polymer laminates. Compos. Part B Eng. 2016, 112, 125–136. [Google Scholar] [CrossRef]
- Refai, A.E. Durability and Fatigue of Basalt Fiber-Reinforced Polymer Bars Gripped with Steel Wedge Anchors. J. Compos. Constr. 2013, 17, 04013006:1–04013006:11. [Google Scholar] [CrossRef]
- Demers, C.E. Fatigue strength degradation of E-glass FRP composites and carbon FRP composites. Constr. Build. Mater. 1998, 12, 311–318. [Google Scholar] [CrossRef]
- Noël, M.; Soudki, K. Fatigue behavior of GFRP reinforcing bars in air and in concrete. J. Compos. Constr. 2014, 18, 04014006:1–04014006:8. [Google Scholar] [CrossRef]
- Adimi, M.R.; Rahman, A.H.; Benmokrane, B. New method for testing fiber-reinforced polymer rods under fatigue. J. Compos. Constr. 2000, 4, 206–213. [Google Scholar] [CrossRef]
- Nakada, M.; Miyano, Y. Accelerated testing for long-term fatigue strength of various FRP laminates for marine use. Compos. Sci. Technol. 2009, 69, 805–813. [Google Scholar] [CrossRef]
- American Concrete Institute (ACI). Guide Test Methods for Fiber-Reinforced Polymers (FRPs) for Reinforcing or Strengthening Concrete Structures, ACI 440.3R-04; ACI: Farmington Hills, MI, USA, 2004. [Google Scholar]
- Lees, J.M.; Gruffydd-Jones, B.; Burgoyne, C.J. Expansive cement couplers: A means of pre-tensioning fibre-reinforced plastic tendons. Constr. Build. Mater. 1995, 9, 413–423. [Google Scholar] [CrossRef]
- Wu, F.Q.; Yao, W.X. A fatigue damage model of composite materials. Int. J. Fatigue 2010, 32, 134–138. [Google Scholar] [CrossRef]
- Wang, Z.K.; Zhao, X.L.; Xian, G.J.; Wu, G.; Singh Raman, R.K.; Al-Saadi, S.; Haque, A. Long-term durability of basalt- and glass-fiber reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment. Constr. Build. Mater. 2017, 139, 467–489. [Google Scholar] [CrossRef]
Type of FRP Bars | Diameter/mm | Ultimate Tensile Strength/MPa | Elastic Modulus/GPa |
---|---|---|---|
GFRP | 12 | 810 | 55.1 |
Temperatures/°C | 25 | 100 | 150 | 200 | 250 | 300 | 350 |
Holding Time/h | - | 0, 1, 2 | 0 | 0, 1, 2 | 0, 1, 2 | 0, 1, 2 | 0 |
Temperature/°C | Holding Time/h | Cyclic Times | Tensile Strength/MPa | Elastic Modulus/GPa |
---|---|---|---|---|
25 | / | 0 | 810 | 55.1 |
4000 | 820 | 55.2 | ||
6000 | 802 | 54.5 | ||
100 | 0 | 0 | 815 | 54.3 |
4000 | 808 | 54.6 | ||
100 | 1 | 0 | 806 | 54.5 |
4000 | 802 | 53.9 | ||
100 | 2 | 0 | 800 | 54.4 |
4000 | 650 | 52.6 | ||
8000 | 585 | 54.7 | ||
150 | 0 | 0 | 806 | 53.2 |
4000 | 785 | 53.8 | ||
6000 | 762 | 53.4 | ||
200 | 0 | 0 | 777 | 52.5 |
4000 | 761 | 53.6 | ||
6000 | 748 | 53.6 | ||
200 | 1 | 0 | 763 | 54.1 |
4000 | 776 | 55.6 | ||
6000 | 755 | 53.1 | ||
8000 | 451 | 54.6 | ||
14,000 | 439 | 49.1 | ||
200 | 2 | 0 | 741 | 46.4 |
4000 | 666 | 45.7 | ||
6000 | 451 | 45.2 | ||
250 | 0 | 0 | 652 | 53.9 |
4000 | 576 | 53.6 | ||
300 | 0 | 0 | 646 | 51.8 |
4000 | 645 | 50.9 | ||
8000 | 460 | 50.7 | ||
300 | 1 | 0 | 638 | 49.7 |
4000 | 534 | 48.8 | ||
8000 | 495 | 48.0 | ||
10,000 | 469 | 46.8 | ||
350 | 0 | 0 | 630 | 48.3 |
4000 | 483 | 47.2 | ||
8000 | 401 | 45.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Zhao, J.; Wang, Z. Fatigue Behavior of Glass Fiber-Reinforced Polymer Bars after Elevated Temperatures Exposure. Materials 2018, 11, 1028. https://doi.org/10.3390/ma11061028
Li G, Zhao J, Wang Z. Fatigue Behavior of Glass Fiber-Reinforced Polymer Bars after Elevated Temperatures Exposure. Materials. 2018; 11(6):1028. https://doi.org/10.3390/ma11061028
Chicago/Turabian StyleLi, Guanghui, Jun Zhao, and Zike Wang. 2018. "Fatigue Behavior of Glass Fiber-Reinforced Polymer Bars after Elevated Temperatures Exposure" Materials 11, no. 6: 1028. https://doi.org/10.3390/ma11061028
APA StyleLi, G., Zhao, J., & Wang, Z. (2018). Fatigue Behavior of Glass Fiber-Reinforced Polymer Bars after Elevated Temperatures Exposure. Materials, 11(6), 1028. https://doi.org/10.3390/ma11061028