Mechanism of Reduced Sintering Temperature of Al2O3–ZrO2 Nanocomposites Obtained by Microwave Hydrothermal Synthesis
Abstract
:1. Introduction
2. Materials and Methods
- The first was the co-precipitation of the precursors;
- The second was 20 min of MHS at t = 270 °C and p = 60 atm, in order to obtain a crystalline mixture of AlO(OH) and ZrO2;
- The third was the drying of the precipitates at room temperature. The mixture of nanopowders obtained in step three will be called AlO(OH)–ZrO2 or as-synthesized;
- The fourth step was calcination of nanopowder mixture at 600 °C for 2 h in order to obtain ZrO2 with γ-Al2O3 originated from AlO(OH).
3. Results
4. Discussion
- The first (1) refers to the temperature range before the nanocomposite will shrink (before onset temperature—Ton). This is the rearrangement region [57] which is visible from RT up to 1100 °C for Al2O3–20 wt % ZrO2, and up to 1150 °C for Al2O3–40 wt % ZrO2. Both of these values are approximately 100 °C lower than results published recently for a similar system by Scoton et al. [57].
- The third (3) step distinguished on the dilatometry curves belongs to the end of the sintering process. The end of the sintering process for both compositions appears at approximately 1300 °C, and is associated with a 22% change of length.
5. Conclusions
- Uniform distribution of zirconia nanoparticles within the alumina matrix;
- Maintaining up to relatively high temperature a grain size in the nano range. As it is known, the driving force for sintering nanomaterials is higher than that for microcrystals;
- θ-Al2O3 stability was extended up to 1200 °C, with enhancement of that phase’s sintering.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chandradass, J.; Kim, M.H.; Bae, D.S. Influence of citric acid to aluminium nitrate molar ratio on the combustion synthesis of alumina–zirconia nanopowders. J. Alloy. Compd. 2009, 470, L9–L12. [Google Scholar] [CrossRef]
- Wei, Z.; Li, H.; Zhang, X.; Yan, S.; Lv, Z.; Chen, Y.; Gong, M. Preparation and property investigation of CeO2–ZrO2–Al2O3 oxygen-storage compounds. J. Alloy. Compd. 2008, 455, 322–326. [Google Scholar] [CrossRef]
- Wang, J.; Taleff, E.M.; Kovar, D. High-temperature deformation of Al2O3/Y-TZPparticulate composites. Acta Mater. 2003, 51, 3571–3583. [Google Scholar] [CrossRef]
- Yin, W.; Meng, B.; Meng, X.; Tan, X. Highly asymmetric YSZ hollow fibre membranes. J. Alloy. Compd. 2009, 476, 566–570. [Google Scholar] [CrossRef]
- Benzaid, R.; Chevalier, J.; Saadaoui, M. Fracture toughness, strength and slow crack growth in a ceria stabilized zirconia–alumina nanocomposite for medical applications. Biomaterials 2008, 29, 3636–3641. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, J.; De-Aza, A.H.; Fantozzi, G.; Schehl, M.; Torrecillas, R. Extending the life time of ceramic orthopaedic implants. Adv. Mater. 2000, 12, 1619–1621. [Google Scholar] [CrossRef]
- Naglieri, V.; Gutknecht, D.; Garnier, V.; Palmero, P.; Chevalier, J.; Montanaro, L. Optimized Slurries for Spray Drying: Different Approaches to Obtain Homogeneous and Deformable Alumina-Zirconia Granules. Materials 2013, 6, 5382–5397. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, J.; Gremillard, L.; Virkar, A.V.; Clarke, D.R. The tetragonal-monoclinic transformation in zirconia: Lessons learned and future trends. J. Am. Ceram. Soc. 2009, 92, 1901–1920. [Google Scholar] [CrossRef]
- Vernieuwe, K.; Lommens, P.; Martins, J.; Van Den Broeck, F.; Van Driessche, I.; De Buysser, K. Aqueous ZrO2 and YSZ Colloidal Systems through Microwave Assisted Hydrothermal Synthesis. Materials 2013, 6, 4082–4095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.-C.; Hsiang, H.; Yen, F.S. Effects of aging on the phase transformation and sintering properties of coprecipitated Al2O3-ZrO2 powders. J. Ceram. Proc. Res. 2008, 9, 13–18. [Google Scholar]
- Suffner, J.; Lattemann, M.; Hahn, H.; Giebeler, L.; Hess, C.; Cano, I.G.; Dosta, S.; Guilemany, J.M.; Musa, JC.; Locci, A.M.; et al. Microstructure Evolution During Spark Plasma Sintering of Metastable (ZrO2–3 mol % Y2O3)–20 wt% Al2O3 Composite Powders. J. Am. Ceram. Soc. 2010, 93, 2864–2870. [Google Scholar] [CrossRef]
- Malka, I.E.; Danelska, A.; Kimmel, G. The Influence of Al2O3 Content on ZrO2-Al2O3 Nanocomposite Formation—The Comparison between Sol-Gel and Microwave Hydrothermal Methods. Mater. Today Proc. 2016, 3, 2713–2724. [Google Scholar] [CrossRef]
- Hannink, R.H.J.; Kelly, P.M.; Muddle, B.C. Transformation toughening inzirconia—Containing ceramics. J. Am. Ceram. Soc. 2000, 83, 461–487. [Google Scholar] [CrossRef]
- Naglieri, V.; Palmero, P.; Montanaro, L.; Chevalier, J. Elaboration of Alumina-Zirconia Composites: Role of the Zirconia Content on the Microstructure and Mechanical Properties. Materials 2013, 6, 2090–2102. [Google Scholar] [CrossRef] [PubMed]
- Beitollahi, A.; Hosseini-Bay, Ć.H.; Sarpoolaki, Ć.H. Synthesis and characterization of Al2O3–ZrO2 nanocomposite powder by sucrose process. J. Mater. Sci. Mater. Electron. 2010, 21, 130–136. [Google Scholar] [CrossRef]
- Septawendar, R.; Setiati, A.; Sutardi, S. Low-temperature calcination at 800 °C of alumina–zirconia nanocomposites using sugar as a gelling agent. Ceram. Int. 2011, 37, 3747–3754. [Google Scholar] [CrossRef]
- Shukla, S.; Seal, S.; Vij, R.; Bandyopadhyay, S. Effect of HPC and water concentration on the evolution of size, aggregation and crystallization of sol–gel nanozirconia. J. Nanopart. Res. 2002, 4, 553–559. [Google Scholar] [CrossRef]
- Begand, S.; Oberbach, T.; Glien, W. Corrosion behaviour of ATZ and ZTA ceramic. Bioceramics 2007, 19, 1227–1230. [Google Scholar]
- Chuang, C.-C.; Hsiang, H.-I.; Hwang, J.S.; Wang, T.S. Synthesis and characterization of Al2O3-Ce0.5Zr0.5O2 powders prepared by chemical coprecipitation method. J. Alloy. Compd. 2009, 470, 387–392. [Google Scholar] [CrossRef]
- Opalinska, A.; Malka, I.; Dzwolak, W.; Chudoba, T.; Presz, A.; Lojkowski, W. Size dependent density of zirconia nanoparticles. Beilstein J. Nanotechnol. 2015, 6, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Lojkowski, W.; Leonelli, C.; Chudoba, T.; Wojnarowicz, J.; Majcher, A.; Mazurkiewicz, A. High-Energy-Low-Temperature Technologies for the Synthesis of Nanoparticles: Microwaves and High Pressure. Inorganics 2014, 2, 606–619. [Google Scholar] [CrossRef]
- Wojnarowicz, J.; Chudoba, T.; Majcher, A.; Łojkowski, W. Microwaves applied to hydrothermal synthesis of nanoparticles. In Microwave Chemistry, 1st ed.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2017; pp. 205–224. ISBN 9783110479935. [Google Scholar] [CrossRef]
- Wojnarowicz, J.; Opalinska, A.; Chudoba, T.; Gierlotka, S.; Mukhovskyi, R.; Pietrzykowska, E.; Sobczak, K.; Lojkowski, W. Effect of water content in ethylene glycol solvent on the size of ZnO nanoparticles prepared using microwave solvothermal synthesis. J. Nanomater. 2016, 2016, 2789871. [Google Scholar] [CrossRef]
- Wojnarowicz, J.; Mukhovskyi, R.; Pietrzykowska, E.; Kusnieruk, S.; Mizeracki, J.; Lojkowski, W. Microwave solvothermal synthesis and characterization of manganese-doped ZnO nanoparticles. Beilstein J. Nanotechnol. 2016, 7, 721–732. [Google Scholar] [CrossRef] [PubMed]
- Demazeau, G. Solvothermal Processes: Definition, Key Factors Governing the Involved Chemical Reactions and New Trends. Z. Naturforsch. 2010, 65, 999–1006. [Google Scholar] [CrossRef]
- Lóh, N.J.; Simão, L.; Jiusti, J.; De Noni, A.; Montedo, O.R.K. Effect of temperature and holding time on the densification of alumina obtained by two-step sintering. Ceram. Int. 2017, 43, 8269–8275. [Google Scholar] [CrossRef]
- Bowen, P.; Carry, C. From powders to sintered pieces: Forming, transformations and sintering of nanostructured ceramic oxides. Powder Technol. 2002, 128, 248–255. [Google Scholar] [CrossRef]
- Meng, F.; Liu, C.; Zhang, F.; Tian, Z.; Huang, W. Densification and mechanical properties of fine-grained Al2O3–ZrO2 composites consolidated by spark plasma sintering. J. Alloy. Compd. 2012, 512, 63–67. [Google Scholar] [CrossRef]
- Kong, Y.M.; Kim, H.E.; Kim, H.W. Production of aluminum–zirconium oxide hybridized nanopowder and its nanocomposite. J. Am. Ceram. Soc. 2007, 90, 298–302. [Google Scholar] [CrossRef]
- Zhuravlev, V.D.; Komolikov, Y.I.; Ermakova, L.V. Correlations among sintering temperature, shrinkage, and open porosityof 3.5YSZ/Al2O3 composites. Ceram. Int. 2016, 42, 8005–8009. [Google Scholar] [CrossRef]
- Benaventea, R.; Salvadora, M.D.; Penaranda-Foix, F.L.; Pallone, E.; Borrell, A. Mechanical properties and microstructural evolution of alumina–zirconia nanocomposites by microwave sintering. Ceram. Int. 2014, 40, 11291–11297. [Google Scholar] [CrossRef]
- Lange, F.F. Transformation toughening Part 4: Fabrication, fracture toughness and strength of Al2O3-ZrO2 composites. J. Mater. Sci. 1982, 17, 247–254. [Google Scholar] [CrossRef]
- Gutierrez-Mora, F.; Singh, D.; Chen, N.; Goretta, K.C.; Routbort, J.L.; Majumdar, S.H.; Dominguez Rodriguez, A. Fracture of composite alumina/yttria-stabilized zirconia joints. J. Eur. Ceram. Soc. 2006, 26, 961–965. [Google Scholar] [CrossRef]
- Zhang, F.; Li, L.F.; Wang, E.Z. Effect of micro-alumina content on mechanical properties of Al2O3/3Y-TZPcomposites. Ceram. Int. 2015, 41, 12417–12425. [Google Scholar] [CrossRef]
- Tang, D.; Lim, H.B.; Lee, K.J.; Lee, C.H.; Cho, W.S. Evaluation of mechanical reliability of zirconia- oughened alumina composites for dental implants. Ceram. Int. 2012, 38, 2429–2436. [Google Scholar] [CrossRef]
- Liu, G.; Xie, Z.; Wu, Y. Fabrication and mechanical properties of homogeneous zirconia toughened alumina ceramics via cyclic solution infiltration and in situ precipitation. Mater. Des. 2011, 32, 3440–3447. [Google Scholar] [CrossRef]
- Tang, D.; Lim, H.; Lee, K.; Ha, S.; Kim, K.; Cho, M.; Park, K.; Cho, W. Mechanical properties and high speed machining characteristics of Al2O3-based ceramics for dental implants. J. Ceram. Process. Res. 2013, 14, 610–615. [Google Scholar]
- EN ISO 11885:2009-Water Quality. Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES); International Organisation for Standarization: Geneva, Switzerland, 2008.
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1967, 2, 65–71. [Google Scholar] [CrossRef]
- Young, R.A.; Sakthivel, A.; Moss, T.S.; Paiva-Santos, C.O. DBWS-9411—An upgrade of the DBWS*.* programs for Rietveld refinement with PC and mainframe computers. J. Appl. Crystallogr. 1995, 28, 366–367. [Google Scholar] [CrossRef]
- Rodrigez-Carvajal, J. Fullprof, Program for Rietveld Refinement; Laboratories Leon Brillouin (CEA-CNRS): Saclay, France, 1997. [Google Scholar]
- ISO 22309:2011-Microbeam Analysis–Quantitative Analysis Using Energy-Dispersive Spectrometry (EDS) for Elements with An Atomic Number of 11 (Na) or Above; International Organisation for Standarization: Geneva, Switzerland, 2011.
- ISO 12154:2014-Determination of Density by Volumetric Displacement. Skeleton Density by Gas Pycnometry; International Organisation for Standarization: Geneva, Switzerland, 2014.
- ISO 9277:2010-Determination of the Specific Surface Area of Solids by Gas Adsorption—BET Method; International Organisation for Standarization: Geneva, Switzerland, 2010.
- Nanopowder XRD Processor Demo. Available online: http://science24.com/xrd/ (accessed on 10 September 2017).
- Huang, X.; Chen, Z.; Gao, T.; Huang, Q.; Niu, F.; Qin, L.; Huang, Y. Hydrogen Generation by Hydrolysis of an Al/Al2O3—Composite Powder After Heat Treatment. Energy Technol. 2013, 1, 751–756. [Google Scholar] [CrossRef]
- Zhang, H.; Li, P.; Cui, W.; Liu, C.; Wang, S.; Zhenga, S.; Zhanga, Y. Synthesis of nanostructured γ-AlOOH and its accelerating behavior on the thermal decomposition of AP. RSC Adv. 2016, 6, 27235. [Google Scholar] [CrossRef]
- Sarkar, D.; Mohapatra, D.; Ray, S.; Bhattacharyya, S.; Adak, S.; Mitra, N. Synthesis and characterization of sol–gel derived ZrO2. Ceram. Int. 2006, 33, 1275–1282. [Google Scholar] [CrossRef]
- Li, M.; Feng, Z.; Xiong, G.; Ying, P.; Xin, Q.; Li, C. Phase transformation in the surface region of zirconia detected by UV Raman spectroscopy. J. Phys. Chem. 2001, 105, 8107–8111. [Google Scholar] [CrossRef]
- Renuka, L.; Anantharaju, K.S.; Sharma, S.C.; Nagaswarupa, H.P.; Prashantha, S.C.; Nagabhushana, H.; Vidya, Y.S. Hollow microspheres Mg-doped ZrO2 nanoparticles: Green assisted synthesis and applications in photocatalysis and photoluminescence. J. Alloy. Compd. 2016, 672, 609–622. [Google Scholar] [CrossRef]
- Mao, Y.; Bai, J.; Zhang, M.; Zhao, H.; Sun, G.; Pan, X.; Zhang, Z.; Zhou, J.; Xie, E. Interface/defect-tunable macro and micro photoluminescence behaviours of Trivalent europium ions in electrospun ZrO2/ZnO porous nanobelts. Phys. Chem. Chem. Phys. 2017, 19, 9223–9231. [Google Scholar] [CrossRef] [PubMed]
- Yobanny Reyes-López, S.; Saucedo Acuña, R.; López-Juárez, R.; Serrato Rodríguez, J. Analysis of the phase transformation of aluminum formate Al(O2CH)3 to α-alumina by Raman and infrared spectroscopy. J. Ceram. Proc. Res. 2013, 14, 627–631. [Google Scholar]
- Liu, Y.; Cheng, B.; Wang, K.-K.; Ling, G.-P.; Cai, J.; Song, C.-L.; Han, G.-R. Study of Raman spectra for γ-Al2O3 models by using first-principles method. Solid State Commun. 2014, 178, 16–22. [Google Scholar] [CrossRef]
- Scheithauer, M.; Knozinger, H.; Vannicey, M.A. Raman Spectra of La2O3 Dispersed on γ-Al2O3. J. Catal. 1998, 178, 701–705. [Google Scholar] [CrossRef]
- Li, P.G.; Lei, M.; Tang, W.H. Raman and photoluminescence properties of α-Al2O3 microcones with hierarchical and repetitive superstructure. Mater. Lett. 2010, 64, 161–163. [Google Scholar] [CrossRef]
- Koltsov, I.; Przesniak-Welenc, M.; Wojnarowicz, J.; Rogowska, R.; Mizeracki, J.; Malysa, M.; Kimmel, G. Thermal and physical properties of ZrO2–AlO(OH) nanopowders synthesised by microwave hydrothermal method. J. Therm. Anal. Calorim. 2017, 131, 2273–2284. [Google Scholar] [CrossRef]
- Scoton, A.; Chinelatto, A.; Chinelatto, A.L.; Ojaimi, C.L.; Ferreira, J.A.; Jesus, E.M.; Pallone, A. Effect of sintering curves on the microstructure of alumina–zirconia nanocomposites. Ceram. Int. 2014, 40, 14669–14676. [Google Scholar]
- Guimaraes, F.A.T.; Silva, K.L.; Trombini, V.; Pierri, J.J.; Rodrigues, J.A.; Tomasi, R.; Pallone, E.M.J.A. Correlation between microstructure and mechanical properties of Al2O3/ZrO2 nanocomposites. Ceram. Int. 2009, 35, 741–745. [Google Scholar] [CrossRef]
- Lamouri, S.; Hamidouche, M.; Bouaouadja, N.; Belhouchet, H.; Garnier, V.; Fantozzi, G.; Trelkat, J.F. Controlof the γ-alumina to α-alumina phase transformation for an optimized alumina densification. Boletin Soc. Esp. Ceram. Vidr. 2017, 48, 47–54. [Google Scholar] [CrossRef]
- Levin, I.; Brandon, D. Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences. J. Am. Ceram. Soc. 1998, 81, 1995–2012. [Google Scholar] [CrossRef]
- Lee, J.; Jeon, H.; Oh, D.G.; Szanyi, J.; Kwak, J.H. Morphology-dependent phase transformation of γ-Al2O3. Appl. Catal. A 2015, 500, 58–68. [Google Scholar] [CrossRef]
- Zhou, R.-S.; Snyder, R.L. Structures and Transformation Mechanisms of the η, γ and θ Transition Aluminas. Acta Cryst. 1991, 47, 617–630. [Google Scholar] [CrossRef]
ZrO2 Bands in As-Synthesized Samples (cm−1) | Literature | AlO(OH) Bands in As-Synthesized Samples (cm−1) | Literature |
472, 605 | Bands between 780 and 500 cm−1 can be assigned to the vibration mode of AlO6 [36] | ||
737 | Al–O–Al framework [37] | ||
900 | Al–O band stretching vibration of boehmite [10] | ||
1070, 1170 | (HO)–Al=O asymmetric stretching and the O–H bending, respectively [46] | ||
1338 | Bending vibration of Zr–OH groups [37], and it might be t-ZrO2 [48] | 1170 | Al–O–H vibrations [48] |
1566 | t-ZrO2 [48] | 1668 | O–H bending mode [37] |
3357 | Stretching vibration of hydroxyl group and the interlayer water molecules [40] | 3099, 3311 | Asymmetric and symmetric O–H stretching vibrations from (O)Al–OH [37] |
ZrO2 Bands in Annealed Samples (cm−1) | Literature | Al2O3 Bands in Annealed Samples (cm−1) | Literature |
440 | symmetric Zr–O–Zr stretching mode related with t-ZrO2 phase [46] It might me ν(Zr–O) band from t-ZrO2 [51] | 447 | Al–O stretching mode in α-Al2O3 [47] |
484 | t-ZrO2 [52], stretching vibrations of Zr–O in ZrO2 | 495 | α-Al2O3 [47] |
567 719 | Zr–O stretching vibrations [50] | 595 | Al–O stretching mode in octahedral structure [50] |
642 | asymmetric Zr–O–Zr stretching mode from the m-ZrO2 phase [49] |
Al2O3–(20,40 wt %) ZrO2 after Annealing at 600 °C | Wavenumbers (cm−1) | Literature | Al2O3–(20,40 wt %) ZrO2 after Annealing at 1400 °C | Wavenumbers (cm−1) | Literature |
---|---|---|---|---|---|
Al2O3–(20 wt %) ZrO2 after annealing at 1400 °C | |||||
t-ZrO2 | 148, 265, 312 | [49] | t-ZrO2 | 147, 270, 315, 459 | [49] |
m-ZrO2 | 177, 188, 215, 355, 382, 477, 513, 559, 637 | [49] | m-ZrO2 | 179, 190, 381, 419, 578, 647 | [49] |
γ-Al2O3 | 234, 404 | [52,53] | α-Al2O3 | 381, 419, 431,578,647, 751 | [52,53,54,55] |
Al2O3–(40 wt %) ZrO2 after annealing at 1400 °C | |||||
t-ZrO2 | 145,269, 314, 456 | [49] | |||
m-ZrO2 | 179, 190, 336, 351, 380, 417, 477, 507, 598, 647 | [49] | |||
α-Al2O3 | 380, 417, 647, 753 | [52,53,54,55] |
Composition (wt %) | Thermal Treatment | Specific Surface Area SSABET (m2/g) | Helium Density (g/cm3) | Densification (%) |
---|---|---|---|---|
Al2O3–20% ZrO2 | 600 °C | 177.2097 ± 0.6228 | 3.5442 ± 0.0062 | 84 |
1400 °C | 3.3659 ± 0.0085 | 4.2073 ± 0.0087 | ||
Al2O3–40% ZrO2 | 600 °C | 95.9208 ± 0.4215 | 3.8257 ± 0.0455 | 90 |
1400 °C | 0.5900 ± 0.0042 | 4.2260 ± 0.0133 |
Composition (wt %) | EDS (wt % of ZrO2) | ICP-OES (wt % of ZrO2) | Phase Composition Obtained from Rietveld Refinement for Samples after Annealing at Different Temperatures (wt %) | ||
---|---|---|---|---|---|
600 °C | 1200 °C | 1400 °C | |||
Al2O3–20% ZrO2 | 20.14 ± 1.37 | 21 ± 1.09 | 83.3 ɣ −Al2O3 | 82.3 θ−Al2O3 | 80.5 α−Al2O3 |
12.9 t−ZrO2 | 14.5 t−ZrO2 | 12.6 t−ZrO2 | |||
3.8 m−ZrO2 | 3.2 m−ZrO2 | 6.8 m−ZrO2 | |||
Al2O3–40% ZrO2 | 38.47 ± 2.61 | 40 ± 0.81 | 67.4 ɣ −Al2O3 | 61.3 θ −Al2O3 | 59.4 α−Al2O3 |
25.9 t−ZrO2 | 13.8 t−ZrO2 | 8.0 t−ZrO2 | |||
6.7 m−ZrO2 | 24.9 m−ZrO2 | 32.6 m−ZrO2 |
Phase: θ-Al2O3, C 2/m | Phase: m-ZrO2, P 21/c | ||||||
---|---|---|---|---|---|---|---|
Atom Position | x | y | z | Atom Position | x | y | z |
Al1:Al3+ | 0.10130 | 0.00000 | 0.79440 | Zr:Zr4+ | 0.27605 | 0.03987 | 0.20927 |
Al2:Al3+ | 0.35230 | 0.00000 | 0.68740 | O1:O2− | 0.06633 | 0.33052 | 0.34468 |
O1:O2− | 0.16270 | 0.00000 | 0.12280 | O2:O2− | 0.45232 | 0.75875 | 0.47537 |
O2:O2− | 0.48950 | 0.00000 | 0.26130 | ||||
O3:O2− | 0.82990 | 0.00000 | 0.43860 | ||||
Phase: α-Al2O3, 167 | x | y | z | Phase: t-ZrO2, P 42/nmc | x | y | z |
Al:Al3+ | 0.00000 | 0.00000 | 0.35230 | Zr:Zr4+ | 0.75000 | 0.25000 | 0.75000 |
O:O2− | 0.30640 | 0.00000 | 0.25000 | O:O2− | 0.25000 | 0.25000 | 0.55000 |
Unit Cell Dimensions in Al2O3–20 wt %ZrO2 | |||||||
T = 1200 °C | T = 1400 °C | ||||||
Phase: | t-ZrO2 | Phase: | t-ZrO2 | ||||
a (Å) | b (Å) | c (Å) | α,β,γ (o) | a (Å) | b (Å) | c (Å) | α, β, γ (o) |
3.597020 | 3.597020 | 5.191563 | α = β = γ 90.0000 | 3.598789 | 3.598789 | 5.200136 | α = β = γ 90.0000 |
Phase: | m-ZrO2 | Phase: | m-ZrO2 | ||||
5.093851 | 5.141055 | 5.313514 | α = γ; β 90.0000; 100.5483 | 5.149243 | 5.186935 | 5.318353 | α = γ; β 90.0000; 99.0302 |
Phase: | θ-Al2O3 | Phase: | α-Al2O3 | ||||
11.802021 | 2.911568 | 5.622274 | α = γ; β 90.0000; 104.0478 | 4.760565 | 4.760565 | 12.996780 | α = β; γ 90.0000; 120.0000 |
Unit Cell Dimensions in Al2O3–40 wt %ZrO2 | |||||||
T = 1200 °C | T = 1400 °C | ||||||
Phase: | t-ZrO2 | Phase: | t-ZrO2 | ||||
a (Å) | b (Å) | c (Å) | α,β,γ (o) | a (Å) | b (Å) | c (Å) | α,β,γ (o) |
3.597343 | 3.597343 | 5.194126 | α = β = γ 90.0000 | 3.599882 | 3.599882 | 5.200407 | α = β = γ 90.0000 |
Phase: | m-ZrO2 | Phase: | m-ZrO2 | ||||
5.146611 | 5.188430 | 5.310700 | α = γ; β 90.0000; 98.9165 | 5.152256 | 5.190232 | 5.315270 | α = γ; β 90.0000; 99.0657 |
Phase: | θ-Al2O3 | Phase: | α-Al2O3 | ||||
11.795719 | 2.911480 | 5.620936 | α = γ; β 90.0000; 104.0352 | 4.762267 | 4.762267 | 12.999507 | α = γ; β 90.0000; 120.0000 |
Composition (wt %) | Sintering Temperature (°C) | Thermal Expansion Coefficient 1 (10−6 K−1)/Structure | Transition Temperature (°C) | |
t-ZrO2 | m-ZrO2 | |||
Al2O3–20% ZrO2 | 1209 | 10.29 | N/A | N/A |
Al2O3–40% ZrO2 | 1231 | 8,99 | 13,84 | 1153 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koltsov, I.; Smalc-Koziorowska, J.; Prześniak-Welenc, M.; Małysa, M.; Kimmel, G.; McGlynn, J.; Ganin, A.; Stelmakh, S. Mechanism of Reduced Sintering Temperature of Al2O3–ZrO2 Nanocomposites Obtained by Microwave Hydrothermal Synthesis. Materials 2018, 11, 829. https://doi.org/10.3390/ma11050829
Koltsov I, Smalc-Koziorowska J, Prześniak-Welenc M, Małysa M, Kimmel G, McGlynn J, Ganin A, Stelmakh S. Mechanism of Reduced Sintering Temperature of Al2O3–ZrO2 Nanocomposites Obtained by Microwave Hydrothermal Synthesis. Materials. 2018; 11(5):829. https://doi.org/10.3390/ma11050829
Chicago/Turabian StyleKoltsov, Iwona, Julita Smalc-Koziorowska, Marta Prześniak-Welenc, Maria Małysa, Giora Kimmel, Jessica McGlynn, Alexey Ganin, and Swietlana Stelmakh. 2018. "Mechanism of Reduced Sintering Temperature of Al2O3–ZrO2 Nanocomposites Obtained by Microwave Hydrothermal Synthesis" Materials 11, no. 5: 829. https://doi.org/10.3390/ma11050829
APA StyleKoltsov, I., Smalc-Koziorowska, J., Prześniak-Welenc, M., Małysa, M., Kimmel, G., McGlynn, J., Ganin, A., & Stelmakh, S. (2018). Mechanism of Reduced Sintering Temperature of Al2O3–ZrO2 Nanocomposites Obtained by Microwave Hydrothermal Synthesis. Materials, 11(5), 829. https://doi.org/10.3390/ma11050829