Synthesis and Characterization of pH and Thermo Dual-Responsive Hydrogels with a Semi-IPN Structure Based on N-Isopropylacrylamide and Itaconamic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Linear Copolymer p(NIPAM-co-IAM)
2.3. Preparation of Semi-IPN Hydrogels
2.4. Characterization
2.4.1. FITR Measurement
2.4.2. 1H NMR Measurement
2.4.3. Gel Permeation Chromatography (GPC)
2.4.4. Dynamic Light Scattering
2.4.5. Differential Scanning Calorimetry (DSC)
2.4.6. Thermal Stability
2.4.7. Scanning Electron Microscopy (SEM) Analysis
2.4.8. Rheological Measurement
2.4.9. Mechanical Properties
2.4.10. Swelling Behavior Measurements
2.4.11. Swelling Kinetics Measurements
2.4.12. Deswelling Kinetics Measurements
3. Results and Discussion
3.1. Preparation of Semi-IPN Hydrogels
3.2. 1H NMR Measurement
3.3. FTIR Measurement
3.4. Thermal Gravimetric Analyses
3.5. Differential Scanning Calorimetry (DSC)
3.6. Morphology
3.7. Rheological Measurement
3.8. Mechanical Properties
3.9. Swelling Behavior
3.9.1. LCST Behavior
3.9.2. Swelling Kinetics and Equilibrium Swelling Ratio
3.9.3. Temperature Dependence
3.9.4. pH Dependence
3.9.5. Deswelling Kinetics
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Aguilar, M.R.; Roman, J.S. Smart Polymers and Their Applications; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Kumar, A.; Srivastava, A.; Galaev, I.Y.; Mattiasson, B. Smart polymers: Physical forms and bioengineering applications. Prog. Polym. Sci. 2007, 32, 1203–1237. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, H.; Xue, H. Reversible pH stimulus-response material based on amphiphilic block polymer self-assembly and its electrochemical application. Materials 2016, 9, 478. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhou, J.; Liu, Z.; Chen, J.; Lü, S.; Sun, H.; Li, J.; Lin, Q.; Yang, B.; Duan, C.; et al. A PNIPAAm-Based Thermosensitive Hydrogel Containing SWCNTs for Stem Cell Transplantation in Myocardial Repair. Biomaterials 2014, 35, 5679–5688. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Bellinger, A.M.; Glettig, D.L.; Barman, R.; Lee, Y.-A.L.; Zhu, J.; Cleveland, C.; Montgomery, V.A.; Gu, L.; Nash, L.D.; et al. A pH-Responsive Supramolecular Polymer Gel as an Enteric Elastomer for Use in Gastric Devices. Nat. Mater. 2015, 14, 1065–1071. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Furyk, S.; Bergbreiter, D.E.; Cremer, P.S. Specific Ion Effects on the Water Solubility of Macromolecules: PNIPAM and the Hofmeister Series. J. Am. Chem. Soc. 2005, 127, 14505–14510. [Google Scholar] [CrossRef] [PubMed]
- Sershen, S.R.; Mensing, G.A.; Ng, M.; Halas, N.J.; Beebe, D.J.; West, J.L. Independent Optical Control of Microfluidic Valves Formed from Optomechanically Responsive Nanocomposite Hydrogels. Adv. Mater. 2005, 17, 1366–1368. [Google Scholar] [CrossRef]
- Bait, N.; Grassl, B.; Derail, C.; Benaboura, A. Hydrogel Nanocomposites as Pressure-Sensitive Adhesives for Skin-Contact Applications. Soft Matter 2011, 7, 2025–2032. [Google Scholar] [CrossRef]
- Kutnyanszky, E.; Hempenius, M.A.; Vancso, G.J. Polymer Bottlebrushes with a Redox Responsive Backbone Feel the Heat: Synthesis and Characterization of Dual Responsive Poly-(ferrocenylsilane)s with PNIPAM Side Chains. Polym. Chem. 2014, 5, 771–783. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, K.; Chen, P.; Sui, X.; Hempenius, M.A.; Liedberg, B.; Vancso, G.J. Highly Swellable, Dual-Responsive Hydrogels Based on PNIPAM and Redox Active Poly- (ferrocenylsilane) Poly(ionic liquid)s: Synthesis, Structure, and Properties. Macromol. Rapid Commun. 2016, 37, 1939–1944. [Google Scholar] [CrossRef] [PubMed]
- Fujishige, S.; Kubota, K.; Ando, I. Phase Transition of Aqueous Solutions of Poly(N-isopropylacrylamide) and Poly(N-isopropylmethacrylamide). J. Phys. Chem. 1989, 93, 3311–3313. [Google Scholar] [CrossRef]
- Doring, A.; Birnbaum, W.; Kuckling, D. Responsive Hydrogels—Structurally and Dimensionally Optimized Smart Frameworks for Applications in Catalysis, Micro-System Technology and Material Science. Chem. Soc. Rev. 2013, 42, 7391–7420. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Chen, J.; Yang, L.; Shi, L.; Tao, Q.; Hui, B.; Li, J. The effect of pH on the LCST of poly(N-isopropylacrylamide) and poly(N-isopropylacrylamide-co-acrylic acid). J. Biomater. Sci. Polym. Edn. 2004, 15, 585–594. [Google Scholar] [CrossRef]
- Shin, Y.; Liu, J.; Chang, J.H.; Exarhos, G.J. Sustained drug release on temperature responsive poly(N-isopropylacrylamide)-integrated hydroxyapatite. Chem. Commun. 2002, 16, 1718–1719. [Google Scholar] [CrossRef]
- Winnik, F.M. Fluorescence studies of aqueous solutions of poly(N-isopropylacrylamide) below and above their LCST. Macromolecules 1990, 23, 233–242. [Google Scholar] [CrossRef]
- Guillame-Gentil, O.; Semenov, O.; Roca, A.S.; Groth, T.; Zahn, R.; Voros, J.; ZenobiWong, M. Engineering the extracellular environment: Strategies for building 2D and 3D cellular structures. Adv. Mater. 2010, 22, 5443–5462. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guo, H.; Gan, J.; Zheng, J.; Zhang, Y.; Wu, K.; Lu, M. Novel fast thermal-responnsive poly(N-isopropylacrylamide) hydrogels with functional cyclodextrin interpenetrating polymer networks for controlled drug release. J. Polym. Res. 2015, 22, 91. [Google Scholar] [CrossRef]
- Guo, B.-L.; Gao, Q.-Y. Preparation and properties of a pH/teperature-responsive carboxymethyl chitosan/poly(N-isopropylacrylamide) semi-IPN hydrogel for oral delivery of drugs. Cabohydr. Res. 2007, 342, 2416–2422. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.-Y.; Li, J.-B.; Sun, C.-M.; Wu, S.-K. Water-solution properties of a hydrophobically modified poly(N-isopropylacrylamide). J. Appl. Polym. Sci. 2000, 75, 247–255. [Google Scholar] [CrossRef]
- Chen, C.-H.; Akashi, M. Synthesis, Characterization, and Catalytic Properties of Colloidal Platinum Nanoparticles Protected by Poly(N-isopropylacrylamide). Langmuir 1997, 13, 6465–6472. [Google Scholar] [CrossRef]
- Haraguchi, K.; Takehisa, T.; Ebato, M. Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels. Biomacromolecules 2006, 7, 3267–3275. [Google Scholar] [CrossRef] [PubMed]
- Gulyuz, U.; Okay, O. Self-healing poly(N-isopropylacrylamide) hydrogels. Eur. Polym. J. 2015, 72, 12–22. [Google Scholar] [CrossRef]
- Gong, J.P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Double Network Hydrogels with Extremely High Mechanical Strength. Adv. Mater. 2003, 15, 1155–1158. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, K.; Ma, J.; Vancso, G.J. Thermoresponsive semi-IPN hydrogel microfibers from continuous fluidic processing with high elasticity and fast actuation. ACS Appl. Mater. Interfaces 2017, 9, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Petrusic, S.; Lewandowski, M.; Giraud, S.; Jovancic, P.; Bugarski, B.; Ostojic, S.; Koncar, V. Development and characterization of thermosensitive hydrogels based on poly(N-isopropylacrylamide) and calcium alginate. J. Appl. Polym. Sci. 2012, 124, 890–903. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, Y.; Kong, Y.; Zhang, E.; Jia, F.; Li, S. Synthesis and charaterztion of Temperature-Sensitive Poly(N-isopropylacrylamide) hydrogel with comonomer and semi-IPN material. Polym.-Plactics Technol. Eng. 2012, 51, 854–860. [Google Scholar] [CrossRef]
- Wei, W.; Hu, X.; Qi, X.; Yu, H.; Liu, Y.; Li, J.; Zhang, J. A novel thermo-responsive hydrogel based on salecan and poly(N-isopropylacrylamide): Synthesis and characterization. Colloids Surface B Bioinertfaces 2015, 125, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.; Lu, M. Thermo and pH dual responsive Poly (N-isopropylacrylamide-co-itaconic acid) hydrogels prepared in aqueous NaCl solutions and their characterization. J. Polym. Res. 2009, 16, 29–37. [Google Scholar] [CrossRef]
- Wei, W.; Qi, X.; Liu, Y.; Li, J.; Hu, X.; Zuo, G.; Zhang, J. Synthesis and characterization of a novel pH-thermo dual responsive hydrogel based on salecan and poly(N, N-diethylacrylamide-co-methacrylic acid). Colloids Surface B Biointerfaces 2015, 136, 1182–1192. [Google Scholar] [CrossRef] [PubMed]
- Rwei, S.; Way, T.; Chang, S.; Chiang, W.; Lien, Y. Thermo- and pH-responsive copolymers: Poly(N-isopropylacrylamide-co-IAM) copolymers. J. Appl. Polym. Sci. 2015. [Google Scholar] [CrossRef]
- Rwei, S.-P.; Chuang, Y.-Y.; Way, T.-F.; Chiang, W.-Y.; Hsu, S.-P. Preparation of thermo- and pH-responsive star copolymers via ATRP and used in drug release application. Colloid Polym. Sci. 2015, 293, 493–503. [Google Scholar] [CrossRef]
- Rwei, S.-P.; Shu, K.-T.; Way, T.-F.; Chang, S.-M.; Chiang, W.-Y.; Pan, W.-C. Synthesis and characterization of hyperbranched copolymers hyper-g-(NIPAAm-co-IAM) via ATRP. Colloid Polym. Sci. 2016, 294, 291–301. [Google Scholar] [CrossRef]
- Rwei, S.-P.; Anh, T.H.N.; Chiang, W.-Y.; Way, T.-F.; Hsu, Y.-J. Synthesis and Drug Delivery Application of Thermo- and pH-Sensitive Hydrogels: Poly(β-CD-co-N-Isopropylacrylamide-co-IAM). Materials 2016, 9, 1003. [Google Scholar] [CrossRef] [PubMed]
- Way, T.F.; Chen, Y.T.; Chen, J.J.; Teng, K. Copolymer and Method for Manufactoring the Same. U.S. Patent 2013/0172490 A1, 4 July 2013. [Google Scholar]
- De Feng, X.; Guo, X.Q.; Qiu, K.Y. Study of the initiation mechanism of the vinyl polymerization with the system persulfate/N,N,N′,N′-tetramethylethylenediamine. Makromol. Chem. 1988, 189, 77–83. [Google Scholar] [CrossRef]
- Wang, X.; Qiu, X.; Wu, C. Comparison of the Coil-to-Globule and the Globule-to-Coil Transitions of a Single Poly(N-isopropylacrylamide) Homopolymer Chain in Water. Macromolecules 1998, 31, 2972–2976. [Google Scholar] [CrossRef]
- Liu, Y.; Bo, S.; Zhu, Y.; Zhang, W. Determination of molecular weight and molecular sizes of polymers by high temperature gel permeation chromatography with a static and dynamic laser light scattering detector. Polymer 2003, 44, 7209–7220. [Google Scholar] [CrossRef]
- Yin, D.; Li, Yi.; Chen, B.; Zhang, H.; Liu, B.; Chang, Q.; Li, Y. Study on Compatibility of Polymer Hydrodynamic Size and Pore Throat Size for Honggang Reservoir. Int. J. Polym. Sci. 2014. [Google Scholar] [CrossRef]
- Cheng, H.; Shen, L.; Wu, C. LLS and FTIR Studies on the Hysteresis in Association and Dissociation of Poly(N-isopropylacrylamide) Chains in Water. Macromolecules 2006, 39, 2325–2329. [Google Scholar] [CrossRef]
- Sousa, R.G.; Magalhaes, W.F.; Freitas, R.F.S. Glass transition and thermal stability of poly(N-isopropylacrylamide) gels and some of their copolymers with acrylamide. Polym. Degrad. Stab. 1998, 61, 275–281. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, X.; Xiao, H. Structure and properties of cellulose/poly(Nisopropylacrylamide) hydrogels prepared by SIPN strategy. Carbohydr. Polym. 2013, 94, 749–754. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Xiao, C.; Tan, H.; Hu, X. Covalently crosslinked hyaluronic acid-chitosan hydrogel containing dexamethasone as an injectable scaffold for soft tissue engineering. J. Appl. Polym. Sci. 2012, 129, 682–688. [Google Scholar] [CrossRef]
- Calvet, D.; Wong, J.Y.; Giasson, G.S. Rheological monitoring of polyacrylamide gelation: Importance of cross-link density and temperature. Macromolecules 2004, 37, 7762–7771. [Google Scholar] [CrossRef]
- Nie, W.; Yuan, X.; Zhao, J.; Zhou, Y.; Bao, H. Rapidly in situ forming chitosan/-polylysine hydrogels for adhesive sealants and hemostatic material. Carbohydr. Polym. 2013, 96, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Kim, U.; Park, J.; Li, C.; Jin, H.; Valluzziand, R.; Kaplan, D.L. Structure and properties of silk hydrogels. Biomacromolecules 2004, 5, 786–792. [Google Scholar] [CrossRef] [PubMed]
- Coronado, R.; Pekerar, S.; Arnaldo, T.L.; Marcos, A.S. Characterization of thermosensitive hydrogels based on poly(N-isopropylacrylamide)/hyaluronic acid. Polym. Bull. 2011, 67, 101–124. [Google Scholar] [CrossRef]
- Hu, X.; Feng, L.; Wei, W.; Xie, A.; Wang, S.; Zhang, J.; Dong, W. Synthesis and characterization of novel semi-IPN hydrogel based on Salecan and poly(N,N-dimethylarylamide-co-2-hydroxyethyl methacrylate). Carbohydr. Polym. 2014, 105, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Panayiotou, M.; Freitag, R. Synthesis and characterisation of stimuli-responsive poly(N,N-diethylacrylamide) hydrogels. Polymer 2005, 46, 615–621. [Google Scholar] [CrossRef]
- Pourjavadi, A.; Harzandi, A.M.; Hosseinzadeh, H. Modified carrageenan. 6. Crosslinked graft copolymer of methacrylic acid and kappa-carrageenan as a novel superabsorbent hydrogel with low salt- and high pH-sensitivity. Macromol. Res. 2005, 13, 483–490. [Google Scholar] [CrossRef]
Samples | Linear Copolymer p(NIPAM-co-IAM) Solution (mL)a | NIPAM (g) | DI Water (mL) | MBA (mg) | APSb Solution (mL) | TEMEDc Solution (mL) | Total Volume (mL) |
---|---|---|---|---|---|---|---|
PNA0 | 0 | 1.00 | 3.1 | 40.0 | 2.3 | 4.6 | 10 |
PNA1 | 1 | 0.77 | 3.6 | 30.8 | 1.8 | 3.6 | 10 |
PNA2 | 2 | 0.69 | 3.2 | 27.6 | 1.6 | 3.2 | 10 |
PNA3 | 3 | 0.60 | 2.8 | 24.6 | 1.4 | 2.8 | 10 |
PNA4 | 4 | 0.52 | 2.4 | 20.0 | 1.2 | 2.4 | 10 |
Sample | Mn.104 (g/mol) | PDI |
---|---|---|
Linear copolymer p(NIPAM-co-IAM) | 5.26 | 3.4 |
Linear homopolymer pNIPAM | 23.9 | 3.6 |
Sample | Pore Size (µm) | Compressive Modulus (kPa) | Fracture Strain (%) | Fracture Stress (kPa) |
---|---|---|---|---|
PNA0 | 112 ± 51 | 30.3 ± 3.1 | 57.5 ± 2.9 | 26.1 ± 2.7 |
PNA1 | 119 ± 16 | 23.1 ± 2.4 | 71.2 ± 3.5 | 20.2 ± 2.1 |
PNA2 | 161 ± 40 | 12.4 ± 1.1 | 80.4 ± 3.9 | 16.6 ± 1.5 |
PNA3 | 253 ± 43 | 5.2 ± 0.6 | 90.1 ± 4.7 | 12.3 ± 1.1 |
PNA4 | 297 ± 61 | 3.2 ± 0.4 | 91.1 ± 4.9 | 9.7 ± 0.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rwei, S.-P.; Tuan, H.N.A.; Chiang, W.-Y.; Way, T.-F. Synthesis and Characterization of pH and Thermo Dual-Responsive Hydrogels with a Semi-IPN Structure Based on N-Isopropylacrylamide and Itaconamic Acid. Materials 2018, 11, 696. https://doi.org/10.3390/ma11050696
Rwei S-P, Tuan HNA, Chiang W-Y, Way T-F. Synthesis and Characterization of pH and Thermo Dual-Responsive Hydrogels with a Semi-IPN Structure Based on N-Isopropylacrylamide and Itaconamic Acid. Materials. 2018; 11(5):696. https://doi.org/10.3390/ma11050696
Chicago/Turabian StyleRwei, Syang-Peng, Huynh Nguyen Anh Tuan, Whe-Yi Chiang, and Tun-Fun Way. 2018. "Synthesis and Characterization of pH and Thermo Dual-Responsive Hydrogels with a Semi-IPN Structure Based on N-Isopropylacrylamide and Itaconamic Acid" Materials 11, no. 5: 696. https://doi.org/10.3390/ma11050696
APA StyleRwei, S.-P., Tuan, H. N. A., Chiang, W.-Y., & Way, T.-F. (2018). Synthesis and Characterization of pH and Thermo Dual-Responsive Hydrogels with a Semi-IPN Structure Based on N-Isopropylacrylamide and Itaconamic Acid. Materials, 11(5), 696. https://doi.org/10.3390/ma11050696