Physio-Microstructural Properties of Aerated Cement Slurry for Lightweight Structures
Abstract
:1. Introduction
2. Materials and Methods
3. Experimental Results and Discussion
3.1. Compressive Strength
3.2. Sorptivity
3.3. SEM Observations
3.4. Ultrasound Pulse Velocity
3.5. Thermal Conductivity
4. Conclusions
- While lowering the density of the aerated slurry by increasing the dosage of foaming agent tends to lower its compressive strength, this relationship is not consistent. Production of fine, spherical and uniformly distributed air bubbles in aerated slurry favors achievement of higher compressive strengths.
- Aeration of slurry benefits its moisture barrier qualities, which benefits its durability. The isolated air bubbles in aerated slurry seem to act as barriers against capillary sorption of moisture into the slurry, thus forcing tortuous diffusion paths. The extent of moisture sorption by slurry also decreases with increasing air content. This could be attributed to the tendency of the isolated air bubbles to remain largely filled with air when the aerated slurry is exposed to moisture.
- Aeration of the cement slurry significantly reduces its thermal conductivity, which benefits the energy-efficiency of building systems. The low thermal conductivity of air in the bubbles introduced via aeration, and the lack of effective convection due to the isolated nature of air bubbles, explain the benefits of aeration towards the insulation value of aerated slurry.
- Ultrasound pulse velocity provides an effective nondestructive means of controlling the quality of aerated slurry and its evolution over time. This method can be conveniently implemented in field conditions for assessing the quality of aerated slurry and its evolution over time.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Prota, A.; Nanni, A.; Manfredi, G.; Cosenza, E. Selective upgrade of underdesigned reinforced concrete beam-column joints using carbon fiber-reinforced polymers. ACI Struct. J. 2004, 101, 699–707. [Google Scholar]
- Nelson, M.S.; Fam, A.Z.; Busel, J.P.; Bakis, C.E.; Nanni, A.; Bank, L.C.; Henderson, M.; Hanus, J. Fiber-reinforced polymer stay-in-place structural forms for concrete bridge decks: State-of-the-art review. ACI Struct. J. 2014, 111, 1069–1079. [Google Scholar] [CrossRef]
- Bianchi, G.; Arboleda, D.; Carozzi, F.G.; Poggi, C.; Nanni, A. Fabric reinforced cementitious matrix (FRCM) materials for structural rehabilitation. In Proceedings of the 39th IAHS World Congress, Milan, Italy, 17–20 September 2013. [Google Scholar]
- Donnini, J.; y Basalo, F.D.C.; Corinaldesi, V.; Lancioni, G.; Nanni, A. Fabric-reinforced cementitious matrix behavior at high-temperature: Experimental and numerical results. Compos. Part B Eng. 2017, 108, 108–121. [Google Scholar] [CrossRef]
- Mallick, P.K. Fiber-Reinforced Composites: Materials, Manufacturing, and Design; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Al-Jabri, K.S.; Hago, A.W.; Al-Nuaimi, A.S.; Al-Saidy, A.H. Concrete blocks for thermal insulation in hot climate. Cem. Concr. Res. 2005, 35, 1472–1479. [Google Scholar] [CrossRef]
- Alengaram, U.J.; Al Muhit, B.A.; bin Jumaat, M.Z.; Jing, M.L.Y. A comparison of the thermal conductivity of oil palm shell foamed concrete with conventional materials. Mater. Des. 2013, 51, 522–529. [Google Scholar] [CrossRef]
- Ng, S.-C.; Low, K.-S. Thermal conductivity of newspaper sandwiched aerated lightweight concrete panel. Energy Build. 2010, 42, 2452–2456. [Google Scholar] [CrossRef]
- Almalkawi, A.T.; Hamadna, S.; Soroushian, P. One-part alkali activated cement based volcanic pumice. Constr. Build. Mater. 2017, 152, 367–374. [Google Scholar] [CrossRef]
- Almalkawi, A.T.; Hong, W.; Hamadna, S.; Soroushian, P.; Al-Chaar, G. Behavior of a lightweight frame made with aerated slurry-infiltrated chicken mesh under cyclic lateral loading. Constr. Build. Mater. 2018, 160, 679–686. [Google Scholar] [CrossRef]
- Almalkawi, A.; Hamadna, S.; Soroushian, P.; Darsana, N. Potential Use of Local Materials as Synthesizing One Part Geopolymer Cement. World Acad. Sci. Eng. Technol. Int. J. Civ. Environ. Eng. 2017, 4. [Google Scholar] [CrossRef]
- Almalkawi, A.T.; Hong, W.; Hamadna, S.; Soroushian, P.; Darsanasiri, A.G.N.D.; Balchandra, A.; Al-Chaar, G. Mechanical properties of aerated cement slurry-infiltrated chicken mesh. Constr. Build. Mater. 2018, 166, 966–973. [Google Scholar] [CrossRef]
- Matalkah, F.; Bharadwaj, H.; Soroushian, P.; Wu, W.; Almalkawi, A.; Balachandra, A.M.; Peyvandi, A. Development of sandwich composites for building construction with locally available materials. Constr. Build. Mater. 2017, 147, 380–387. [Google Scholar] [CrossRef]
- Hostettmann, K.; Marston, A. Chemistry and Pharmacology of Natural Products, Saponin; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Ribeiro, B.; Barreto, D.; Coelho, M. Application of foam column as green technology for concentration of saponins from sisal (Agave sisalana) and Juá (Ziziphus joazeiro). Braz. J. Chem. Eng. 2013, 30, 701–709. [Google Scholar] [CrossRef]
- Ribeiro, B.D.; Barreto, D.W.; Coelho, M.A.Z. Use of micellar extraction and cloud point preconcentration for valorization of saponins from sisal (Agave sisalana) waste. Food Bioprod. Process. 2015, 94, 601–609. [Google Scholar] [CrossRef]
- Nambiar, E.K.; Ramamurthy, K. Air-void characterisation of foam concrete. Cem. Concr. Res. 2007, 37, 221–230. [Google Scholar] [CrossRef]
- Ramamurthy, K.; Nambiar, E.K.; Ranjani, G.I.S. A classification of studies on properties of foam concrete. Cem. Concr. Compos. 2009, 31, 388–396. [Google Scholar] [CrossRef]
- Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H. Geopolymer foam concrete: An emerging material for sustainable construction. Constr. Build. Mater. 2014, 56, 113–127. [Google Scholar] [CrossRef]
- Jones, M.; McCarthy, A. Preliminary views on the potential of foamed concrete as a structural material. Mag. Concr. Res. 2005, 57, 21–32. [Google Scholar] [CrossRef]
- Uysal, H.; Demirboğa, R.; Şahin, R.; Gül, R. The effects of different cement dosages, slumps, and pumice aggregate ratios on the thermal conductivity and density of concrete. Cem. Concr. Res. 2004, 34, 845–848. [Google Scholar] [CrossRef]
- Fenwick, D.E.; Oakenfull, D. Saponin content of food plants and some prepared foods. J. Sci. Food Agric. 1983, 34, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Osbourn, A. Saponins and plant defence—A soap story. Trends Plant Sci. 1996, 1, 4–9. [Google Scholar] [CrossRef]
- Shimoyamada, M.; Ikedo, S.; Ootsubo, R.; Watanabe, K. Effects of soybean saponins on chymotryptic hydrolyses of soybean proteins. J. Agric. Food Chem. 1998, 46, 4793–4797. [Google Scholar] [CrossRef]
- Du, L.; Folliard, K.J. Mechanisms of air entrainment in concrete. Cem. Concr. Res. 2005, 35, 1463–1471. [Google Scholar] [CrossRef]
- Murray, B.S. Stabilization of bubbles and foams. Curr. Opin. Colloid Interface Sci. 2007, 12, 232–241. [Google Scholar] [CrossRef]
- Rosen, M.J.; Kunjappu, J.T. Surfactants and Interfacial Phenomena; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Binks, B.P. Particles as surfactants—Similarities and differences. Curr. Opin. Colloid Interface Sci. 2002, 7, 21–41. [Google Scholar] [CrossRef]
- Maldonado-Valderrama, J.; Martín-Molina, A.; Martín-Rodriguez, A.; Cabrerizo-Vílchez, M.A.; Gálvez-Ruiz, M.J.; Langevin, D. Surface properties and foam stability of protein/surfactant mixtures: Theory and experiment. J. Phys. Chem. C 2007, 111, 2715–2723. [Google Scholar] [CrossRef]
- Chatterji, S. Freezing of air-entrained cement-based materials and specific actions of air-entraining agents. Cem. Concr. Compos. 2003, 25, 759–765. [Google Scholar] [CrossRef]
- Dias, W. Durability indicators of OPC concretes subject to wick action. Mag. Concr. Res. 1993, 45, 263–274. [Google Scholar] [CrossRef]
- Hall, C.; Yau, M.R. Water movement in porous building materials—IX. The water absorption and sorptivity of concretes. Build. Environ. 1987, 22, 77–82. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; She, W.; Ma, L.; Zhu, W. Ultrasound monitoring of setting and hardening process of ultra-high performance cementitious materials. NDT E Int. 2012, 47, 177–184. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Jiang, Q.; Sun, G.; Zhang, W. In situ continuously monitoring the early age microstructure evolution of cementitious materials using ultrasonic measurement. Constr. Build. Mater. 2011, 25, 3998–4005. [Google Scholar] [CrossRef]
- She, W.; Zhang, Y.; Jones, M. Using the ultrasonic wave transmission method to study the setting behavior of foamed concrete. Constr. Build. Mater. 2014, 51, 62–74. [Google Scholar]
- Active Standard ASTM C177-10. Standard Test Method for Steady State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded Hot Plate Apparatus. ASTM International: West Conshohocken, PA, USA, 2010. Available online: https://www.astm.org/Standards/C177.htm (accessed on 12 April 2018).
- Guo, M.; Juan, Q.; Li, P.F.; Yao, Q.F. Seismic performance experimental research for multi-ribbed composite wall strengthened with aerated concrete blocks. J. Sichuan Univ. Eng. Sci. Ed. 2011, 43, 51–57. [Google Scholar]
- Ohsaki, M.; Miyamura, T.; Kohiyama, M.; Yamashita, T.; Akiba, H. Seismic Response Simulation of Building Structures. In High-Performance Computing for Structural Mechanics and Earthquake/Tsunami Engineering; Springer: Cham, Switzerland, 2016; pp. 105–139. [Google Scholar]
- Active Standard ASTM C1585-13. Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes. ASTM International: West Conshohocken, PA, USA, 2013. Available online: http://www.astm.org/cgi-bin/resolver.cgi?C1585 (accessed on 12 April 2018).
- Prim, P.; Wittmann, F. Structure and water absorption of aerated concrete. In Autoclaved Aerated Concrete, Moisture and Properties; Elsevier: Amsterdam, The Netherlands, 1983; pp. 55–69. [Google Scholar]
- Tada, S.; Nakano, S. Microstructural approach to properties of moist cellular concrete. In Proceedings Autoclaved Aerated Concrete, Moisture and Properties; Elsevier: Amsterdam, The Netherlands, 1983; pp. 71–89. [Google Scholar]
- Goual, M.S.; De Barquin, F.; Benmalek, M.L.; Bali, A.; Quéneudec, M. Estimation of the capillary transport coefficient of Clayey Aerated Concrete using a gravimetric technique. Cem. Concr. Res. 2000, 30, 1559–1563. [Google Scholar] [CrossRef]
- Madjoudj, N.; Dheilly, R.M.; Queneudec, M. Water capillary absorption of cellular clayed concrete obtained by proteinic foaming. In Innovations and Developments in Concrete Materials and Construction: Proceedings of the International Conference held at the University of Dundee, Scotland, UK on 9–11 September 2002; Thomas Telford Publishing: Westerkirk, UK, 2002. [Google Scholar]
- Giannakou, A.; Jones, M. Potentials of foamed concrete to enhance the thermal performance of low rise dwellings. In Innovations and Developments in Concrete Materials and Construction: Proceedings of the International Conference Held at the University of Dundee, Scotland, UK on 9–11 September 2002; Thomas Telford Publishing: London, UK, 2002; pp. 533–544. [Google Scholar]
- Nambiar, E.K.; Ramamurthy, K. Sorption characteristics of foam concrete. Cem. Concr. Res. 2007, 37, 1341–1347. [Google Scholar] [CrossRef]
- Just, A.; Middendorf, B. Microstructure of high-strength foam concrete. Mater. Charact. 2009, 60, 741–748. [Google Scholar] [CrossRef]
- Kearsley, E.; Wainwright, P. The effect of porosity on the strength of foamed concrete. Cem. Concr. Res. 2002, 32, 233–239. [Google Scholar] [CrossRef]
- Olorunsogo, F.T.; Wainwright, P.J. Effect of GGBFS particle-size distribution on mortar compressive strength. J. Mater. Civ. Eng. 1998, 10, 180–187. [Google Scholar] [CrossRef]
- Dhir, R.K.; Henderson, N.A. (Eds.) Specialist Techniques and Materials for Concrete Construction: Proceedings of the International Conference Held at the University of Dundee, Scotland, UK on 8–10 September 1999; Thomas Telford: Westerkirk, UK, 1999. [Google Scholar]
- Valore, R.C. Cellular concretes Part 1 composition and methods of preparation. J. Proc. 1954, 50, 773–796. [Google Scholar]
- Sugama, T.; Brothers, L.; Van de Putte, T. Air-foamed calcium aluminate phosphate cement for geothermal wells. Cem. Concr. Compos. 2005, 27, 758–768. [Google Scholar] [CrossRef]
- Alexanderson, J. Relations between structure and mechanical properties of autoclaved aerated concrete. Cem. Concr. Res. 1979, 9, 507–514. [Google Scholar] [CrossRef]
- Sengul, O.; Azizi, S.; Karaosmanoglu, F.; Tasdemir, M.A. Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy Build. 2011, 43, 671–676. [Google Scholar] [CrossRef]
- Saygılı, A.; Baykal, G. A new method for improving the thermal insulation properties of fly ash. Energy Build. 2011, 43, 3236–3242. [Google Scholar] [CrossRef]
Mix | Saponin Dosage (by Weight of Cement) | Water/Cement Ratio |
---|---|---|
1 | 0.005% | 0.45 |
2 | 0.01% | |
3 | 0.02% | |
4 | 0.005% | 0.50 |
5 | 0.01% | |
6 | 0.02% | |
7 | 0.005% | 0.55 |
8 | 0.01% | |
9 | 0.015% | |
10 | 0.02% | |
11 | 0.025% | |
12 | 0.03% | |
13 | 0.02% | 0.6 |
14 | 0.025% |
Mix | Seven-Day Compressive Strength, MPa | Density, g/cm3 |
---|---|---|
1 | 10.7 | 1.9 |
2 | 8.2 | 1.5 |
3 | 6.3 | 1.4 |
4 | 14.1 | 1.2 |
5 | 10.5 | 1.81 |
6 | 9.2 | 1.3 |
7 | 13.3 | 1.6 |
8 | 11.1 | 1.7 |
9 | 9.4 | 1.3 |
10 | 6.4 | 1.17 |
11 | 2.4 | 0.65 |
12 | 1.2 | 0.8 |
13 | 5.4 | 0.9 |
14 | 7.1 | 1.12 |
Dosage of Foaming Agent % | 0.01% | 0.015% | 0.02% |
---|---|---|---|
Initial sorption rate, mm/ | 0.0242 | 0.0188 | 0.0132 |
Secondary sorption rate, mm/ | 0.0044 | 0.0013 | 0.0019 |
R2 (Regression value) | 0.951 | 0.950 | 0.958 |
Density, g/cm3 | 1.7 | 1.3 | 1.17 |
Sorptivity, mm/min0.5 | 0.75 | 0.5 | 0.34 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almalkawi, A.T.; Salem, T.; Hamadna, S.; Darsanasiri, A.G.N.D.; Soroushian, P.; Balchandra, A.; Al-Chaar, G. Physio-Microstructural Properties of Aerated Cement Slurry for Lightweight Structures. Materials 2018, 11, 597. https://doi.org/10.3390/ma11040597
Almalkawi AT, Salem T, Hamadna S, Darsanasiri AGND, Soroushian P, Balchandra A, Al-Chaar G. Physio-Microstructural Properties of Aerated Cement Slurry for Lightweight Structures. Materials. 2018; 11(4):597. https://doi.org/10.3390/ma11040597
Chicago/Turabian StyleAlmalkawi, Areej T., Talal Salem, Sameer Hamadna, A. G. N. D. Darsanasiri, Parviz Soroushian, Anagi Balchandra, and Ghassan Al-Chaar. 2018. "Physio-Microstructural Properties of Aerated Cement Slurry for Lightweight Structures" Materials 11, no. 4: 597. https://doi.org/10.3390/ma11040597
APA StyleAlmalkawi, A. T., Salem, T., Hamadna, S., Darsanasiri, A. G. N. D., Soroushian, P., Balchandra, A., & Al-Chaar, G. (2018). Physio-Microstructural Properties of Aerated Cement Slurry for Lightweight Structures. Materials, 11(4), 597. https://doi.org/10.3390/ma11040597