Photophysical and Photocatalytic Properties of BiSnSbO6 under Visible Light Irradiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of BiSnSbO6 and N-Doped TiO2 Photocatalysts
2.2. Characterization
2.3. Photocatalytic Properties Test
2.4. Photoelectrochemical Properties Test
3. Results and Discussion
3.1. Characterization
3.2. Photocatalytic Activity
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhe, L.; Shirley, A.S.; Thomas, E.P.; Amila, O.D.S. Occurrence and fate of substituted diphenylamine antioxidants and benzotriazole UV stabilizers in various Canadian wastewater treatment processes. Water Res. 2017, 124, 158–166. [Google Scholar]
- Voutsa, D.; Hartmann, P.; Schaffner, C.; Giger, W. Benzotriazoles, alkylphenols and bisphenol A in bunicipal wastewaters and in the Glatt River, Switzerland. Environ. Sci. Pollut. Res. 2006, 13, 333–341. [Google Scholar] [CrossRef]
- Liu, R.; Ruan, T.; Wang, T.; Song, S.; Guo, F.; Jiang, G. Determination of nine benzotriazole UV stabilizers in environmental water samples by automated on-line solid phase extraction coupled with high-performance liquid chromatography−tandem mass spectrometry. Talanta 2014, 120, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.; Ying, G.; Ma, Y.; Chen, Z.; Chen, F.; Liu, Y. Occurrence and dissipation of benzotriazoles and benzotriazole ultraviolet stabilizers in biosolid-amended soils. Environ. Toxicol. Chem. 2014, 33, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Bakken, L.R.; Breedveld, G.D.; Aagaard, P.; Frostegård, Å. Organic compounds that reach subsoil may threaten groundwater quality: Effect of benzotriazole on degradation kinetics and microbial community composition. Soil Biol. Biochem. 2006, 38, 2543–2556. [Google Scholar] [CrossRef]
- Nakata, H.; Murata, S.; Filatreau, J. Occurrence and concentrations of benzotriazole UV stabilizers in marine organisms and sediments from the Ariake Sea, Japan. Environ. Sci. Technol. 2009, 43, 6920–6926. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Ramaswamy, B.R.; Chang, K.; Isobe, T.; Tanabe, S. Multiresidue analytical method for the determination of antimicrobials, preservatives, benzotriazole UV stabilizers, flame retardants and plasticizers in fish using ultra high performance liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 3511–3520. [Google Scholar] [CrossRef] [PubMed]
- Zhe, L.; Amila, O.D.S.; Thomas, E.P.; Cyril, J.C.; Gerald, R.T.; Mark, R.S.; Derek, C.G.M. Distribution, partitioning and bioaccumulation of substituted diphenylamine antioxidants and benzotriazole UV stabilizers in an Urban Creek in Canada. Environ. Sci. Technol. 2016, 50, 9089–9097. [Google Scholar]
- Hem, L.J.; Hartnik, T.; Roseth, R.; Breedveld, G.D. Photochemical degradation of benzotriazole. J. Environ. Sci. Health A 2003, 38, 471–481. [Google Scholar] [CrossRef]
- Hollingsworth, J.; Sierra-Alvarez, R.; Zhou, M.; Ogden, K.L.; Field, J.A. Anaerobic biodegradability and methanogenic toxicity of key constituents in copper chemical mechanical planarization effluents of the semiconductor industry. Chemosphere 2005, 59, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Li, L.; Guo, C.S.; zhang, Y.; Wang, S.F. Removal of benzotriazole from solution by BiOBr photocatalysis under simulated solar irradiation. Chem. Eng. J. 2013, 221, 230–237. [Google Scholar] [CrossRef]
- Xu, X.J.; Fang, X.S.; Zhai, T.Y.; Zeng, H.B.; Liu, B.D.; Hu, X.Y.; Bando, Y.; Golberg, D. Tube-in-tube TiO2 nanotubes with porous walls: Fabrication, formation mechanism, and photocatalytic properties. Small 2011, 7, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, D.; Mahata, A. Demineralization of organic pollutants on the dye modified TiO2 semiconductor particulate system using visible light. Appl. Catal. B 2001, 33, 119–125. [Google Scholar] [CrossRef]
- Katoh, R.; Murai, M.; Furube, A. Electron-hole recombination in the bulk of a rutile TiO(2) single crystal studied by sub-nanosecond transient absorption spectroscopy. Chem. Phys. Lett. 2008, 461, 238–248. [Google Scholar] [CrossRef]
- Wang, W.; Dong, L.; Wang, J.P.; Shi, X.M.; Han, S.Y. Characterization and photocatalytic activity of mesoporous TiO2 prepared from an ethanol-diethyl ether binary solvent system. Chem. Phys. Lett. 2014, 616, 1–5. [Google Scholar] [CrossRef]
- Ding, Y.B.; Yang, C.Z.; Zhu, L.H.; Zhang, J.D. Photoelectrochemical activity of liquid phase deposited TiO2 film for degradation of benzotriazole. J. Hazard. Mater. 2010, 175, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Jorfiab, S.; Kakavandicd, B.; Motlaghab, H.R.; Ahmadiab, M.; Jaafarzadeh, N. A novel combination of oxidative degradation for benzotriazole removal using TiO2 loaded on FeIIFe2IIIO4@C as an efficient activator of peroxymonosulfate. Appl. Catal. B 2017, 219, 216–230. [Google Scholar] [CrossRef]
- Reddy, D.A.; Choi, J.; Lee, S.; Kim, T.K. Controlled synthesis of heterostructured Ag@AgI/ZnS microspheres with enhanced photocatalytic activity and selective separation of methylene blue from mixture dyes. J. Taiwan Inst. Chem. Eng. 2016, 66, 200–209. [Google Scholar] [CrossRef]
- Liu, L.Q.; Dao, T.D.; Kodiyath, R.; Kang, Q.; Abe, H.; Nagao, T.; Ye, J.H. Plasmonic janus-composite photocatalyst comprising Au and C-TiO2 for enhanced aerobic oxidation over a broad visible-light range. Adv. Funct. Mater. 2014, 24, 7754–7762. [Google Scholar] [CrossRef]
- Lee, S.; Reddy, D.A.; Kim, T.K. Well-wrapped reduced graphene oxide nanosheets on Nb3O7(OH) nanostructures as good electron collectors and transporters for efficient photocatalytic degradation of rhodamine B and phenol. RSC Adv. 2016, 6, 37180–37188. [Google Scholar] [CrossRef]
- Reddy, D.A.; Lee, S.; Choi, J.; Park, S.; Ma, R.; Yang, H.; Kim, T.K. Green synthesis of AgI-reduced graphene oxide nanocomposites: Toward enhanced visible-light photocatalytic activity for organic dye removal. Appl. Surf. Sci. 2015, 341, 175–184. [Google Scholar] [CrossRef]
- Reddy, D.A.; Ma, R.; Kim, T.K. Efficient photocatalytic degradation of methylene blue by heterostructured ZnO-RGO/RuO2 nanocomposite under the simulated sunlight irradiation. Ceram. Int. 2015, 41, 6999–7009. [Google Scholar] [CrossRef]
- Reddy, D.A.; Choi, J.; Lee, S.; Ma, R.; Kim, T.K. Self-assembled macro porous ZnS-graphene aerogels for photocatalytic degradation of contaminants in water. RSC Adv. 2015, 5, 18342–18351. [Google Scholar] [CrossRef]
- Zhang, A.Y.; Wang, W.K.; Pei, D.N.; Yu, H.Q. Degradation of refractory pollutants under solar light irradiation by a robust and self-protected ZnO/CdS/TiO2 hybrid photocatalyst. Water Res. 2016, 92, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Reddy, D.A.; Ma, R.; Choi, M.Y.; Kim, T.K. Reduced graphene oxide wrapped ZnS-Ag2S ternary composites synthesized via hydrothermal method: Applications in photocatalyst degradation of organic pollutants. Appl. Surf. Sci. 2015, 324, 725–735. [Google Scholar] [CrossRef]
- Reddy, D.A.; Choi, J.; Lee, S.; Ma, R.; Kim, T.K. Green synthesis of AgI nanoparticle-functionalized reduced graphene oxide aerogels with enhanced catalytic performance and facile recycling. RSC Adv. 2015, 5, 67394–67404. [Google Scholar] [CrossRef]
- Ge, L.; Zhang, X.H. Synthesis of novel visible light driven BiVO4 photocatalysts via microemulsion process and its photocatalytic performance. J. Inorg. Mater. 2009, 24, 453–456. [Google Scholar] [CrossRef]
- Islam, M.J.; Kim, H.K.; Reddy, D.A.; Kim, Y.; Ma, R.; Baek, H.; Kim, J.; Kim, T.K. Hierarchical BiOI nanostructures supported on a metal organic framework as efficient photocatalysts for degradation of organic pollutants in water. Dalton Trans. 2017, 46, 6013–6023. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.Q.; Xiong, X.Y.; Ding, S.P.; Liu, X.F.; Jiang, Q.Q.; Hu, J.C. In-situ topotactic synthesis and photocatalytic activity of plate-like BiOCl/2D networks Bi2S3 heterostructures. Appl. Catal. B 2018, 220, 570–580. [Google Scholar] [CrossRef]
- Meng, Q.Q.; Zhou, Y.S.; Chen, G.; Hu, Y.D.; Lv, C.D.; Qiang, L.S.; Xing, W.N. Integrating both homojunction and heterojunction in QDs self-decorated Bi2MoO6/BCN composites to achieve an efficient photocatalyst for Cr(VI) reduction. Chem. Eng. J. 2018, 334, 334–343. [Google Scholar] [CrossRef]
- Yang, L.Q.; Huang, J.F.; Shi, L.; Cao, L.Y.; Zhou, W.; Chang, K.; Meng, X.G.; Liu, G.G.; Jie, Y.N.; Ye, J.H. Efficient hydrogen evolution over Sb doped SnO2 photocatalyst sensitized by Eosin Y under visible light irradiation. Nano Energy 2017, 36, 331–340. [Google Scholar] [CrossRef]
- Yang, L.Q.; Huang, J.F.; Shi, L.; Cao, L.Y.; Liu, H.M.; Liu, Y.Y.; Li, Y.X.; Song, H.; Jie, Y.N.; Ye, J.H. Sb doped SnO2-decorated porous g-C3N4 nanosheet heterostructures with enhanced photocatalytic activities under visible light irradiation. Appl. Catal. B 2018, 221, 670–680. [Google Scholar] [CrossRef]
- Nasser, R.; Othmen, W.B.; Elhouichet, H.; Ferid, M. Preparation, characterization of Sb-doped ZnO nanocrystals and their excellent solar light driven photocatalytic activity. Appl. Catal. B 2017, 393, 486–495. [Google Scholar] [CrossRef]
- Shimodaira, Y.; Kato, H.; Kobayashi, H.; Kudo, A. Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation. J. Phys. Chem. B 2006, 110, 17790–17797. [Google Scholar] [CrossRef] [PubMed]
- He, G.P.; Xing, C.L.; Xiao, X.; Hu, R.P.; Zuo, X.X.; Nan, J.M. Facile synthesis of flower-like Bi12O17Cl2/β-Bi2O3 composites with enhanced visible light photocatalytic performance for the degradation of 4-tert-butylphenol. Appl. Catal. B 2015, 170, 1–9. [Google Scholar] [CrossRef]
- Luan, J.F.; Shen, Y.; Zhang, L.Y.; Guo, N.B. Property characterization and photocatalytic activity evaluation of BiGdO3 nanoparticles under visible light irradiation. Int. J. Mol. Sci. 2016, 17. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.B.; Pan, C.S.; Yao, W.Q.; Zhu, Y.F. Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. J. Phys. Chem. B 2005, 109, 22432–22439. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.M.; Zhang, T.W. Photodegradation of rhodamine B in water assisted by titania films prepared through a novel procedure. J. Photochem. Photobiol. A Chem. 2004, 162, 171–177. [Google Scholar] [CrossRef]
- Guo, Y.P.; Zhao, J.Z.; Zhang, H.; Yang, S.F.; Qi, J.R.; Wang, Z.C.; Xu, H.D. Use of rice husk-based porous carbon for adsorption of Rhodamine B from aqueous solutions. Dyes Pigments 2005, 66, 123–128. [Google Scholar] [CrossRef]
- Horikoshi, S.; Hojo, F.; Hikaka, H.; Serpone, N. Environmental remediation by an integrated microwave/UV illumination technique. 8. Fate of carboxylic acids, aldehydes, alkoxycarbonyl and phenolic substrates in a microwave radiation field in the presence of TiO2 particles under UV irradiation. Environ. Sci. Technol. 2004, 38, 2198–2208. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Suhas; Ali, I.; Saini, V.K. Removal of rhodamine B, fast green, and methylene blue from wastewater using red mud, an aluminum industry waste. Ind. Eng. Chem. Res. 2004, 43, 1740–1747. [Google Scholar] [CrossRef]
- Fujii, T.; Nishikiori, H.; Tamura, T. Absorpyion-spectra of rhodamine-B dimers in dip-coated thin-films prepared by the sol-gel method. Chem. Phys. Lett. 1995, 233, 424–429. [Google Scholar] [CrossRef]
- Valdes-Aguilera, O.; Neckers, D.C. Aggregation phenomena in xanthene dyes. Accounts Chem. Res. 1989, 22, 171–177. [Google Scholar] [CrossRef]
- Sakthivel, S.; Shankar, M.V.; Palanichamy, M.; Arabindoo, B.; Bahnemann, D.W.; Murugesan, V. Enhancement of photocatalytic activity by metal deposition: Characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res. 2004, 38, 3001–3008. [Google Scholar] [CrossRef] [PubMed]
- Marugan, J.; Hufschmidt, D.; Sagawe, G.; Selzer, V.; Bahnemann, D. Optical density and photonic efficiency of silica-supported TiO2 photocatalysts. Water Res. 2006, 40, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.J.; Ding, S.S.; Meng, L.J.; Dai, Y.X.; Sun, C.; Yang, S.G. One-pot microemulsion-mediated synthesis of Bi-rich Bi4O5Br2 with controllable morphologies and excellent visible-light photocatalytic removal of pollutants. Appl. Catal. B 2017, 207, 153–165. [Google Scholar] [CrossRef]
- Izumi, F.; Murata, H.; Murata, H.; Watanabe, N. Rietveld analysis of powder patterns obtained by tof neutron-diffraction using gold neutron sources. J. Appl. Crystallogr. 1987, 20, 411–418. [Google Scholar] [CrossRef]
- Luan, J.F.; Ma, K.; Pan, B.C.; Li, Y.M.; Wu, X.S.; Zou, Z.G. Synthesis and catalytic activity of new Gd2BiSbO7 and Gd2YSbO7 nanocatalysts. J. Mol. Catal. A Chem. 2010, 321, 1–9. [Google Scholar] [CrossRef]
- Nithya, V.D.; Selvan, R.K.; Kalpana, D.; Vasylechko, L.; Sanjeeviraja, C. Synthesis of Bi2WO6 nanoparticles and its electrochemical properties in different electrolytes for pseudocapacitor electrodes. Electrochim. Acta 2013, 109, 720–731. [Google Scholar] [CrossRef]
- Le, N.T.H.; Thanh, T.D.; Pham, V.T.; Phan, T.L.; Lam, V.D.; Manh, D.H.; Anh, T.X.; Le, T.K.C.; Thammajak, N.; Hong, L.V.; et al. Structure and high photocatalytic activity of (N, Ta)-doped TiO2 nanoparticles. J. Appl. Phys. 2016, 120, 142110. [Google Scholar] [CrossRef]
- Wiegel, M.; Middel, W.; Blasse, G. Influence of ns2 ions on the luminescence of niobates and tantalates. J. Mater. Chem. 1995, 5, 981–983. [Google Scholar] [CrossRef]
- Nagatani, H.; Suzuki, I.; Kita, M.; Tanaka, M.; Katsuya, Y.; Sakata, O.; Omata, T. Structure of beta-AgGaO2; ternary I-III-VI2 oxide semiconductor with a wurtzite-derived structure. J. Solid State Chem. 2015, 222, 66–70. [Google Scholar] [CrossRef]
- Butler, M.A. Photoelectrolysis and physical-properties of semiconducting electrode WO3. J. Appl. Phys. 1977, 48, 1914–1920. [Google Scholar] [CrossRef]
- Calza, P.; Rigo, L.; Sangermano, M. Investigations of photocatalytic activities of photosensitive semiconductors dispersed into epoxy matrix. Appl. Catal. B Environ. 2011, 106, 657–663. [Google Scholar] [CrossRef]
- Luan, J.F.; Shen, Y.; Li, Y.Y.; Paz, Y. The structural, photocatalytic property characterization and enhanced photocatalytic activities of novel photocatalysts Bi2GaSbO7 and Bi2InSbO7 during visible light irradiation. Material 2016, 9, 801. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.J.; Reddy, D.A.; Choi, J.; Kim, T.K. Surface oxygen vacancy assisted electron transfer and shuttling for enhanced photocatalytic activity of a Z-scheme CeO2-Agl nanocomposite. RSC Adv. 2016, 6, 19341–19350. [Google Scholar] [CrossRef]
- Yu, C.L.; Wu, Z.; Liu, R.Y.; Dionysiou, D.D.; Yang, K.; Wang, C.Y.; Liu, H. Novel fluorinated Bi2MoO6 nanocrystals for efficient photocatalytic removal of water organic pollutants under different light source illumination. Appl. Catal. B 2017, 209, 1–11. [Google Scholar] [CrossRef]
- Choi, J.; Reddy, D.A.; Kim, T.K. Enhanced photocatalytic activity and anti-photocorrosion of AgI nanostructures by coupling with graphene-analogue boron nitride nanosheets. Ceram. Int. 2015, 41, 13793–13803. [Google Scholar] [CrossRef]
- Choi, J.; Reddya, D.A.; Islam, M.J.; Seo, B.; Joo, S.H.; Kim, T.K. Green synthesis of the reduced graphene oxide-CuI quasi-shell-core nanocomposite: A highly efficient and stable solar-light-induced catalyst for organic dye degradation in water. Appl. Surf. Sci. 2015, 358, 159–167. [Google Scholar] [CrossRef]
- Choi, J.; Reddy, D.A.; Islam, M.J.; Ma, R.; Kim, T.K. Self-assembly of CeO2 nanostructures/reduced graphene oxide composite aerogels for efficient photocatalytic degradation of organic pollutants in water. J. Alloy. Compd. 2016, 688, 527–536. [Google Scholar] [CrossRef]
- Yang, C.M.; Gao, G.M.; Zhang, J.J.; Liu, R.P.; Fan, R.C.; Zhao, M.; Wang, Y.W.; Gan, S.C. Surface oxygen vacancy induced solar light activity enhancement of a CdWO4/Bi2O2CO3 core-shell heterostructure photocatalyst. Phys. Chem. Chem. Phys. 2017, 19, 14431–14441. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.M.; Wu, J.; Li, Q.F.; Liu, Q.Z.; Qi, Y.F.; You, L.; Ji, Z.; He, P.; Sheng, P.F.; Ren, J.X. Fabrication of BiOIO3 with induced oxygen vacancies for efficient separation of the electron-hole pairs. Appl. Catal. B 2017, 218, 80–90. [Google Scholar] [CrossRef]
- Islam, M.J.; Reddy, D.A.; Han, N.S.; Choi, J.; Song, J.K.; Kim, T.K. An oxygen-vacancy rich 3D novel hierarchical MoS2/BiOI/AgI ternary nanocomposite: Enhanced photocatalytic activity through photogenerated electron shuttling in a Z-scheme manner. Phys. Chem. Chem. Phys. 2016, 18, 24984–24993. [Google Scholar] [CrossRef] [PubMed]
- Song, C.D.; Wang, X.; Zhang, J.; Chen, X.B.; Li, C. Enhanced performance of direct Z-scheme CuS-WO3 system towards photocatalytic decomposition of organic pollutants under visible light. Appl. Surf. Sci. 2017, 425, 788–795. [Google Scholar] [CrossRef]
- Ye, Y.; Feng, Y.; Bruning, H.; Yntem, D.; Rijnaarts, H.H.M. Photocatalytic degradation of metoprolol by TiO2 nanotube arrays and UV-LED: Effects of catalyst properties, operational parameters, commonly present water constituents, and photo-induced reactive species. Appl. Catal. B 2018, 220, 171–181. [Google Scholar] [CrossRef]
- Fotiou, T.; Triantis, T.M.; Kaloudis, T.; O’Shea, K.E.; Dionysiou, D.D.; Hiskia, A. Assessment of the roles of reactive oxygen species in the UV and visible light photocatalytic degradation of cyanotoxins and water taste and odor compounds using C-TiO2. Water Res. 2016, 90, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Horikoshi, S.; Saitou, A.; Hidaka, H.; Serpone, N. Environmental remediation by an integrated microwave/UV illumination method. V. Thermal and nonthermal effects of microwave radiation on the photocatalyst and on the photodegradation of rhodamine-b under UV/Vis radiation. Environ. Sci. Technol. 2003, 37, 5813–5822. [Google Scholar] [CrossRef] [PubMed]
- Li, J.P.; Zhang, X.; Ai, Z.H.; Jia, F.L.; Zhang, L.Z.; Lin, J. Efficient visible light degradation of rhodamine B by a photo-electrochemical process based on a Bi2WO6 nanoplate film electrode. J. Phys. Chem. C 2007, 111, 6832–6836. [Google Scholar] [CrossRef]
- Liu, G.; Wu, T.; Zhao, J.; Hidaka, H.; Serpone, N. Photoassisted degradation of dye pollutants. 8. Irreversible degradation of alizarin red under visible light radiation in air-equilibrated aqueous TiO2 dispersions. Environ. Sci. Technol. 1999, 33, 2081–2087. [Google Scholar] [CrossRef]
- Nasr, C.; Vinodgopal, K.; Fisher, L.; Hotchandani, S.; Chattopadhyay, A.K.; Kamat, P.V. Environmental photochemistry on semiconductor surfaces. Visible light induced degradation of a textile diazo dye, naphthol blue black, on TiO2 nanoparticles. J. Phys. Chem. 1996, 100, 8436–8442. [Google Scholar] [CrossRef]
- Oshikiri, M.; Boero, M.; Ye, J.H.; Zou, Z.G.; Kido, G. Electronic structures of promising photocatalysts InMO4 (M = V, Nb, Ta) and BiVO4 for water decomposition in the visible wavelength region. J. Chem. Phys. 2002, 117, 7313–7318. [Google Scholar] [CrossRef]
BiSnSbO6 | Bi 4f7/2 | Sn 3d5/2 | Sb 3d5/2 | O 1s | C 1s |
---|---|---|---|---|---|
Binding energy (eV) | 163.88 | 490.98 | 533.78 | 534.78 | 289.08 |
corrected binding energy of C (eV) | 159.8 | 486.9 | 529.7 | 530.7 | 285.0 |
Catalyst | Degradation Method | Light Source | Target Pollutant | Removal Rate | SBET (m2/g) | KBZT/SBET (g·min−1·m−2) | Ref | |
---|---|---|---|---|---|---|---|---|
liquid phase deposited TiO2 film | photoelectro- chemistry | 15 W UV lamp | 0.2 mM benzotriazole | 89.8% (180 min) | - | - | [17] | |
TiO2 loaded on FeIIFe2IIIO4@C | photocatalysis | UV-C lamp, 6 W PHILIPS | 60 mg/L (0.5 M) benzotriazole | 55.3% (60 min) | 269.5 | - | [18] | |
BiOBr | photocatalysis | 800 W xenon lamp | 1 mg/L (8.4 mM) benzotriazole | 89.7% (180 min) | 5.86 | 2.18 × 10−3 | [12] | |
BiSnSbO6 | photocatalysis | 500 W xenon lamp | 0.032 mM benzotriazole | 100% (180 min) | 4.78 | 3.08 × 10−3 | [our own work] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luan, J.; Huang, P. Photophysical and Photocatalytic Properties of BiSnSbO6 under Visible Light Irradiation. Materials 2018, 11, 491. https://doi.org/10.3390/ma11040491
Luan J, Huang P. Photophysical and Photocatalytic Properties of BiSnSbO6 under Visible Light Irradiation. Materials. 2018; 11(4):491. https://doi.org/10.3390/ma11040491
Chicago/Turabian StyleLuan, Jingfei, and Panqi Huang. 2018. "Photophysical and Photocatalytic Properties of BiSnSbO6 under Visible Light Irradiation" Materials 11, no. 4: 491. https://doi.org/10.3390/ma11040491
APA StyleLuan, J., & Huang, P. (2018). Photophysical and Photocatalytic Properties of BiSnSbO6 under Visible Light Irradiation. Materials, 11(4), 491. https://doi.org/10.3390/ma11040491