Fabrication of Fe–Co Magnetostrictive Fiber Reinforced Plastic Composites and Their Sensor Performance Evaluation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Stankovic, J.A. Research directions for the internet of things. IEEE Internet Things J. 2014, 1, 3–9. [Google Scholar] [CrossRef]
- Ju, Q.; Zhang, Y. Predictive power management for Internet of Battery-Less Things. IEEE Trans. Power Electron. 2018, 33, 299–312. [Google Scholar] [CrossRef]
- Narita, F.; Fox, M. A review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications. Adv. Eng. Mater. 2018, 20, 1700743. [Google Scholar] [CrossRef]
- Wang, L.; Yuan, F.G. Vibration energy harvesting by magnetostrictive material. Smart Mater. Struct. 2008, 17, 045009. [Google Scholar] [CrossRef]
- Clark, A.E.; DeSavage, B.F.; Bozorth, R. Anomalous thermal expansion and magnetostriction of single-crystal dysprosium. Phys. Rev. 1965, 138, A216–A224. [Google Scholar] [CrossRef]
- Davino, D.; Giustiniani, A.; Visone, C. The piezo-magnetic parameters of Terfenol-D: An experimental viewpoint. Physcia B 2012, 407, 1427–1432. [Google Scholar] [CrossRef]
- Mori, K.; Horibe, T.; Ishikawa, S.; Shindo, Y.; Narita, F. Characteristics of vibration energy harvesting using giant magnetostrictive cantilevers with resonant tuning. Smart Mater. Struct. 2015, 24, 125032. [Google Scholar] [CrossRef]
- Duenas, T.A.; Carman, G.P. Particle distribution study for low-volume fraction magnetostrictive composites. J. Appl. Phys. 2001, 90, 2433–2439. [Google Scholar] [CrossRef]
- Dong, X.; Ou, J.; Guan, X.; Qi, M. Optimal orientation field to manufacture magnetostrictive composites with high magnetostrictive performance. J. Magn. Magn. Mater. 2010, 322, 3648–3652. [Google Scholar] [CrossRef]
- Kaleta, J.; Lewandowski, D.; Mech, R. Magnetostriction of field-structural composite with Terfenol-D particles. Arch. Civ. Mech. Eng. 2015, 15, 897–902. [Google Scholar] [CrossRef]
- Elhajjar, R.F.; Law, C.T. Magnetomechanical local-global effects in magnetostrictive composite materials. Model. Simul. Mater. Sci. Eng. 2015, 23, 075002. [Google Scholar] [CrossRef]
- Tomiczek, A.E.; Mech, R.; Dobrzanski, L.A. Variation of magneto-mechanical properties in giant magnetostrictive composite materials. Polym. Compos. 2017, 38, 797–802. [Google Scholar] [CrossRef]
- Kubicka, M.; Mahrholz, T.; Kuhn, A.; Wierach, P.; Sinapius, M. Magnetostrictive properties of epoxy resins modified with Terfenol-D particles for detection of internal stress in CFRP. Part 1: Materials and processes. J. Mater. Sci. 2012, 47, 5752–5759. [Google Scholar] [CrossRef]
- Kubicka, M.; Mahrholz, T.; Kuhn, A.; Wierach, P.; Sinapius, M. Magnetostrictive properties of epoxy resins modified with Terfenol-D particles for detection of internal stress in CFRP. Part 2: Evaluation of stress detection. J. Mater. Sci. 2013, 48, 6578–6584. [Google Scholar] [CrossRef]
- Yoffe, A.; Weber, Y.; Shilo, D. A physically based model for stress sensing using magnetostrictive composites. J. Mech. Phys. Solids 2015, 85, 203–218. [Google Scholar] [CrossRef]
- Yoffe, A.; Shilo, D. The magneto-mechanical response of magnetostrictive composites for stress sensing applications. Smart Mater. Struct. 2017, 26, 065007. [Google Scholar] [CrossRef]
- Adelsberg, N.; Weber, Y.; Yoffe, A.; Shilo, D. Wireless thin layer force sensor based on a magnetostrictive composite material. Smart Mater. Struct. 2017, 26, 065013. [Google Scholar] [CrossRef]
- Rezaeealam, B.; Ueno, T.; Yamada, S. Finite element analysis of Galfenol unimorph vibration energy harvester. IEEE Trans. Mag. 2012, 48, 3977–3980. [Google Scholar] [CrossRef]
- Kita, S.; Ueno, T.; Yamada, S. Improvement of force factor of magnetostrictive vibration power generator for high efficiency. J. Appl. Phys. 2015, 117, 17B508. [Google Scholar] [CrossRef]
- Yamaura, S.; Nakajima, T.; Satoh, T.; Ebata, T.; Furuya, Y. Magnetostriction of heavily deformed Fe–Co binary alloys prepared by forging and cold rolling. Mater. Sci. Eng. B 2015, 193, 121–129. [Google Scholar] [CrossRef]
- Kimura, N.; Kubota, T.; Yamamoto, T.; Fukuoka, S.; Furuya, Y. Heat treatment effect on magnetic properties in rapidly solidified Co–Fe alloy. J. Jpn. Inst. Met. Mater. 2015, 79, 441–446. [Google Scholar] [CrossRef]
- Narita, F. Inverse magnetostrictive effect in Fe29Co71 wire/polymer composites. Adv. Eng. Mater. 2017, 19, 1600586. [Google Scholar] [CrossRef]
- Narita, F.; Katabira, K. Stress-rate dependent output voltage for Fe29Co71 magnetostrictive fiber/polymer composites: Fabrication, experimental observation and theoretical prediction. Mater. Trans. 2017, 58, 302–304. [Google Scholar] [CrossRef]
- Yang, Z.; Nakajima, K.; Onodera, R.; Tayama, T.; Chiba, D.; Narita, F. Magnetostrictive clad steel plates for high-performance vibration energy harvesting. Appl. Phys. Lett. 2018, 112, 073902. [Google Scholar] [CrossRef]
Specimen | Length l (mm) | Width w (mm) | Thickness h (mm) | Fabric Distribution |
---|---|---|---|---|
Type 1 | 25.05 | 12.00 | 7.55 | Near the center |
Type 2 | 23.50 | 11.50 | 7.55 | In one side |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katabira, K.; Yoshida, Y.; Masuda, A.; Watanabe, A.; Narita, F. Fabrication of Fe–Co Magnetostrictive Fiber Reinforced Plastic Composites and Their Sensor Performance Evaluation. Materials 2018, 11, 406. https://doi.org/10.3390/ma11030406
Katabira K, Yoshida Y, Masuda A, Watanabe A, Narita F. Fabrication of Fe–Co Magnetostrictive Fiber Reinforced Plastic Composites and Their Sensor Performance Evaluation. Materials. 2018; 11(3):406. https://doi.org/10.3390/ma11030406
Chicago/Turabian StyleKatabira, Kenichi, Yu Yoshida, Atsuji Masuda, Akihito Watanabe, and Fumio Narita. 2018. "Fabrication of Fe–Co Magnetostrictive Fiber Reinforced Plastic Composites and Their Sensor Performance Evaluation" Materials 11, no. 3: 406. https://doi.org/10.3390/ma11030406