Green Synthesis of Boron Carbonitride with High Capacitance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Thin BCN Sheets
2.2. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Li, Y.; Peng, Z.; Larios, E.; Wang, G.; Lin, J.; Yan, Z.; Ruiz-Zepeda, F.; Jos-yacamn, M.; Tour, J.M. Rebar Graphene from Functionalized Boron Nitride Nanotubes. ACS Nano 2015, 9, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-Bandgap Properties and Evidence for Ultraviolet Lasing of Hexagonal Boron Nitride Single Crystal. Nat. Mater. 2004, 3, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, L.; Xia, Z.; Roy, A.; Chang, D.; Baek, J.; Dai, L. BCN Graphene as Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2012, 51, 4209–4212. [Google Scholar] [CrossRef] [PubMed]
- Konno, H.; Ito, T.; Ushiro, M.; Fushimi, K.; Azumi, K. High Capacitance B/C/N Composites for Capacitor Electrodes Synthesized by a Simple Method. J. Power Sources 2010, 195, 1739–1746. [Google Scholar] [CrossRef]
- Bai, X.D.; Zhi, C.Y.; Wang, E.G. Boron Carbonitride Nanofibers: Synthesis, Characterization, and Photoluminescence Properties. J. Nanosci. Nanotechnol. 2001, 1, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Wang, M.; Shao, Y.; Wang, L.; Wu, Y.; Wang, Z.; Hao, X. ‘Thermal Substitution’ for Preparing Ternary BCN Nanosheets with Enhanced and Controllable Nonlinear Optical Performance. J. Mater. Chem. C 2017, 5, 2559–2565. [Google Scholar] [CrossRef]
- Azevedo, S.; Paiva, R.; Kaschny, J.R. Stability and Electronic Structure of BxNyCz Nanotubes. J. Phys. Condens. Matter 2006, 18, 10871–10879. [Google Scholar] [CrossRef]
- Enyashin, A.N.; Makurin, Y.N.; Ivanovskii, A.L. Quantum chemical study of the electronic structure of new nanotubular systems: α-Graphyne-Like Carbon, Boron–Nitrogen and Boron–Carbon–Nitrogen Nanotubes. Carbon 2004, 42, 2081–2089. [Google Scholar] [CrossRef]
- Sun, C.L.; Ma, F.K.; Cai, L.; Wang, A.Z.; Wang, Z.Y.; Zhao, M.W.; Yan, W.S.; Hao, X.P. Metal-free Ternary BCN Nanosheets with Synergetic Effect of Band Gap Engineering and Magnetic Properties. Sci. Rep. 2017, 7, 6617. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, J.H.; Qu, B.Y.; Wu, Q.S.; Zhou, R.L.; Zhang, D.D.; Zhang, B.; Ren, M.X.; Zeng, X.C. Mechanistic insights into tunable luminescence and persistent luminescence of the full-color-emitting BCNO phosphors. Carbon 2017, 122, 176–184. [Google Scholar] [CrossRef]
- Bhat, B.; Lauterbach, S.; Dzivenko, D.; Lathe, C.; Bayarjargal, L.; Schwarz, M.; Kleebe, H.; Kroke, E.; Winkler, B.; Riedel, R. High-Pressure High-Temperature Behavior of Polymer Derived Amorphous B-C-N. J. Phys. Conf. Ser. 2014, 500, 182004–182009. [Google Scholar] [CrossRef]
- Yin, L.; Bando, Y.; Golberg, D.; Gloter, A.; Li, M.; Yuan, X.; Sekiguchi, T. Porous BCN Nanotubular Fibers: Growth and Spatially Resolved Cathodoluminescence. J. Am. Chem. Soc. 2005, 127, 16354–16355. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Feng, W.; Luo, H.; Tan, Y.; Wang, Y.; Zhang, H.; Zhang, T.; Peng, S. A facile approach to fabricate boron carbonitride microspheres via precursor pyrolysis. Chem. Phys. Lett. 2017, 674, 164–167. [Google Scholar] [CrossRef]
- Qin, L.; Yu, J.; Kuang, S. Few-atomic-layered boron carbonitride nanosheets prepared by chemical vapor deposition. Nanoscale 2012, 4, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Chen, C.; Zhang, M.; Lin, L.; Ye, X.; Lin, S.; Antonietti, M.; Wang, X. Carbon-doped BN Nanosheets for Metal-free Photoredox Catalysis. Nat. Commun. 2015, 6, 7698. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.P.; Huang, Y.Z.; Hu, X.L.; Li, R.K.; Qian, Y.J.; Li, D.X. Synthesis and Characterization of “Ravine-like” BCN Compounds with High Capacitance. Materials 2018, 11, 209. [Google Scholar] [CrossRef] [PubMed]
- Rao, C.N.R.; Gopalakrishnan, K. Borocarbonitrides, BxCyNz: Synthesis, Characterization, and Properties with Potential Applications. ACS Appl. Mater. Interfaces 2017, 9, 19478–19494. [Google Scholar] [CrossRef] [PubMed]
- Raidongia, K.; Nag, A.; Hembram, K.P.S.S.; Waghmare, U.V.; Datta, R.; Rao, C.N.R. BCN: A Graphene Analogue with Remarkable Adsorptive Properties. Chem. Eur. J. 2010, 16, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Tay, R.Y.; Li, H.; Tsang, S.H.; Zhu, M.; Loeblein, M.; Jing, L.; Leong, F.N.; Teo, E.H.T. Trimethylamine Borane: A New Single-Source Precursor for Monolayer h-BN Single Crystals and h-BCN Thin Films. Chem. Mater. 2016, 28, 2180–2190. [Google Scholar] [CrossRef]
- Ling, Z.; Wang, Z.; Zhang, M.; Yu, C.; Gang, W.; Dong, Y.; Liu, S.; Wang, Y.; Qiu, J.S. Sustainable Synthesis and Assembly of Biomass-Derived B/N Co-Doped Carbon Nanosheets with Ultrahigh Aspect Ratio for High-Performance Supercapacitors. Adv. Funct. Mater. 2016, 26, 111–119. [Google Scholar] [CrossRef]
- Guo, F.S.; Yang, P.J.; Pan, Z.M.; Cao, X.N.; Xie, Z.L.; Wang, X.C. Carbon-Doped BN Nanosheets for the Oxidative Dehydrogenation of Ethylbenzene. Angew. Chem. 2017, 129, 1–6. [Google Scholar] [CrossRef]
- Zhou, J.; Li, N.; Gao, F.; Zhao, Y.; Hou, L.; Xu, Z. Vertically-aligned BCN Nanotube Arrays with Superior Performance in Electrochemical Capacitors. Sci. Rep. 2014, 4, 6083. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Fan, L.Z.; Zhou, M.Q.; Guan, H.; Qiao, S.; Antonietti, M.; Titirici, M.M. Nitrogen-Containing Hydrothermal Carbons with Superior Performance in Supercapacitors. Adv. Mater. 2010, 22, 5202–5206. [Google Scholar] [CrossRef] [PubMed]
- Lyyamperumal, E.; Wang, S.Y.; Li, L.M. Vertically Aligned BCN Nanotubes with High Capacitance. ACS Nano 2012, 6, 5259–5265. [Google Scholar] [CrossRef] [PubMed]
- Dou, S.; Huang, X.B.; Ma, Z.L.; Wu, J.H.; Wang, S.Y. A simple approach to the synthesis of BCN graphene with high capacitance. Nanotechnology 2015, 26, 045402. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Huang, Y.; Hu, X.; Li, R.; Qian, Y.; Li, D. Green Synthesis of Boron Carbonitride with High Capacitance. Materials 2018, 11, 387. https://doi.org/10.3390/ma11030387
Chen D, Huang Y, Hu X, Li R, Qian Y, Li D. Green Synthesis of Boron Carbonitride with High Capacitance. Materials. 2018; 11(3):387. https://doi.org/10.3390/ma11030387
Chicago/Turabian StyleChen, Dongping, Yanzhen Huang, Xinling Hu, Rongkai Li, Yingjiang Qian, and Dongxu Li. 2018. "Green Synthesis of Boron Carbonitride with High Capacitance" Materials 11, no. 3: 387. https://doi.org/10.3390/ma11030387
APA StyleChen, D., Huang, Y., Hu, X., Li, R., Qian, Y., & Li, D. (2018). Green Synthesis of Boron Carbonitride with High Capacitance. Materials, 11(3), 387. https://doi.org/10.3390/ma11030387