Investigation of Surface Morphology of 6H-SiC Irradiated with He+ and H2+ Ions
Abstract
:1. Introduction
2. Experiments
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Celler, G.K.; Cristoloveanu, S. Frontiers of silicon-on-insulator. J. Appl. Phys. 2003, 93, 4955–4978. [Google Scholar] [CrossRef]
- Ishimaru, M.; Dickerson, R.M.; Sickafus, K.E. Scanning Transmission Electron Microscopy-Energy Dispersive X-ray/Electron Energy Loss Spectroscopy Studies on SiC-on-Insulator Structures. J. Electrochem. Soc. 2000, 147, 1979–1981. [Google Scholar] [CrossRef]
- Bruel, M. Application of hydrogen ion beams to silicon on insulator material technology. Nucl. Instrum. Methods Phys. Res. B 1996, 108, 313–319. [Google Scholar] [CrossRef]
- Tong, Q.-Y.; Lee, T.-H.; Werner, P.; Gosele, U. Fabrication of Single Crystalline SiC Layer on High Temperature Glass. J. Electrochem. Soc. 1997, 144, L111. [Google Scholar] [CrossRef]
- Liang, J.H.; Hsieh, H.Y.; Wu, C.W.; Lin, C.M. Dependence of implantation sequence on surface blistering characteristics due to H and He ions co-implanted in silicon. Nucl. Instrum. Methods Phys. Res. B 2015, 365, 128–132. [Google Scholar] [CrossRef]
- Agarwal, A.; Haynes, T.E.; Venezia, V.C.; Holland, O.W.; Eaglesham, D.J. Efficient production of silicon-on-insulator films by co-implantation of He+ with H+. Appl. Phys. Lett. 1998, 72, 1086–1088. [Google Scholar] [CrossRef]
- Igarashi, S.; Muto, S.; Tanabe, T.; Aihara, J.; Hojou, K. In-situ observation of surface blistering in silicon by deuterium and helium ion irradiation. Surf. Coat. Technol. 2002, 158–159, 421–425. [Google Scholar] [CrossRef]
- Cherkashin, N.; Daghbouj, N.; Darras, F.X.; Fnaiech, M.; Claverie, A. Cracks and blisters formed close to a silicon wafer surface by He-H co-implantation at low energy. J. Appl. Phys. 2015, 118, 245301. [Google Scholar] [CrossRef]
- Alimov, V.K.; Roth, J.; Mayer, M. Depth distribution of deuterium in single- and polycrystalline tungsten up to depths of several micrometers. J. Nucl. Mater. 2005, 337–339, 619–623. [Google Scholar] [CrossRef]
- Ueda, Y.; Funabiki, T.; Shimada, T.; Fukumoto, K.; Kurishita, H.; Nishikawa, M. Hydrogen blister formation and cracking behavior for various tungsten materials. J. Nucl. Mater. 2005, 337–339, 1010–1014. [Google Scholar] [CrossRef]
- Giguère, A.; Terreault, B. Systematics of the giant isotope effect in hydrogen ion blistering of materials. Surf. Coat. Technol. 2007, 201, 8205–8209. [Google Scholar] [CrossRef]
- Muto, S.; Matsui, T.; Tanabe, T. Observation of surface blistering by grazing incidence electron microscopy. Jpn. J. Appl. Phys. 2000, 39, 3555–3556. [Google Scholar] [CrossRef]
- Igarashi, S.; Muto, S.; Tanabe, T. Surface blistering of ion irradiated SiC studied by grazing incidence electron microscopy. J. Nucl. Mater. 2002, 307–311, 1126–1129. [Google Scholar] [CrossRef]
- Amarasinghe, V.P.; Wielunski, L.; Barcz, A.; Feldman, L.C.; Celler, G.K. Properties of H+ Implanted 4H-SiC as Related to Exfoliation of Thin Crystalline Films. ECS J. Solid State Sci. Technol. 2014, 3, 37–42. [Google Scholar] [CrossRef]
- Li, B.S.; Wang, Z.G.; Jin, J.F. Implantation temperature and thermal annealing behavior in H2+-implanted 6H-SiC. Nucl. Instrum. Methods Phys. Res. B 2013, 316, 239–244. [Google Scholar] [CrossRef]
- Zhang, L.; Li, B.S. Study of surface exfoliation on 6H-SiC induced by H2+ implantation. Phys. B Condens. Matter 2017, 508, 104–111. [Google Scholar] [CrossRef]
- Terreault, B. Hydrogen blistering of silicon: Progress in fundamental understanding. Phys. Status Solidi. Appl. Mater. Sci. 2007, 204, 2129–2184. [Google Scholar] [CrossRef]
- Scherzer, B. Sputtering by Particle Bombardment II. Top. Appl. Phys. 1983, 52, 271–355. [Google Scholar]
- Feng, X.; Huang, Y. Mechanics of Smart-Cut technology. Int. J. Solids Struct. 2004, 41, 4299–4320. [Google Scholar] [CrossRef]
- Muto, S.; Tanabe, T.; Maruyama, T. Cross Sectional TEM Observation of Gas-Ion-Irradiation Induced Surface Blisters and Their Precursors in SiC. Mater. Trans. 2003, 44, 2599–2604. [Google Scholar] [CrossRef]
- Shen, Q.; Zhou, W.; Ran, G.; Li, R.; Feng, Q.; Li, N. Evolution of Helium Bubbles and Discs in Irradiated 6H-SiC during Post-Implantation Annealing. Materials 2017, 10, 101. [Google Scholar] [CrossRef] [PubMed]
- Timoshenko, S.; Woinowsky-krieger, S. Theory of Plates and Shells; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Muto, S.; Enomoto, N. Substructures of gas-ion-irradiation-induced surface blisters in silicon studied by cross-sectional transmission electron microscopy. Mater. Trans. 2005, 46, 2117–2124. [Google Scholar] [CrossRef]
- Enomoto, N.; Muto, S.; Tanabe, T.; Davis, J.W.; Haasz, A.A. Grazing-incidence electron microscopy of surface blisters in single- and polycrystalline tungsten formed by H+, D+ and He+ irradiation. J. Nucl. Mater. 2009, 385, 606–614. [Google Scholar] [CrossRef]
- Knapp, J.A.; Follstaedt, D.M.; Myers, S.M.; Barbour, J.C.; Friedmann, T.A.; Knapp, J.A.; Follstaedt, D.M.; Myers, S.M.; Barbour, J.C.; Friedmann, T.A. Finite-element modeling of nanoindentation. J. Appl. Phys. 1999, 85, 1463–1474. [Google Scholar] [CrossRef]
- Snead, L.L.; Nozawa, T.; Katoh, Y.; Byun, T.-S.; Kondo, S.; Petti, D.A. Handbook of SiC Properties for Fuel Performance Modeling. J. Nucl. Mater. 2007, 371, 329–377. [Google Scholar] [CrossRef]
- Snead, L.L.; Katoh, Y. Radiation Effects in SiC and SiC–SiC. Compr. Nucl. Mater. 2012, 215–240. [Google Scholar]
- Kreith, F.; Goswami, D.Y. The CRC Handbook of Mechanical Engineering, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Petersen, K.E. Silicon as a Mechanical Material. Proc. IEEE 1982, 70, 420–457. [Google Scholar] [CrossRef]
- Hong, J.W.; Cheong, S. A crack model for the onset of blisters using finite surface thicknesses. J. Appl. Phys. 2006, 100, 1–5. [Google Scholar] [CrossRef]
- Barbot, J.F.; Leclerc, S.; David, M.-L.; Oliviero, E.; Montsouka, R.; Pailloux, F.; Eyidi, D.; Denanot, M.-F.; Beaufort, M.-F.; Declémy, A.; et al. Helium implantation into 4H-SiC. Phys. Status Solidi 2009, 206, 1916–1923. [Google Scholar] [CrossRef]
- Snead, L.L.; Zinkle, S.J.; Hay, J.C.; Osborne, M.C. Amorphization of SiC under ion and neutron irradiation. Nucl. Instrum. Methods Phys. Res. B 1998, 141, 123–132. [Google Scholar] [CrossRef]
- Huang, L.-J.; Tong, Q.-Y.; Chao, Y.-L.; Lee, T.-H.; Martini, T.; Gösele, U. Onset of blistering in hydrogen-implanted silicon. Appl. Phys. Lett. 1999, 74, 982. [Google Scholar] [CrossRef]
- Muto, S.; Matsui, T.; Tanabe, T. Non-destructive structural analysis of surface blistering by TEM and EELS in a reflection configuration. J. Nucl. Mater. 2001, 290–293, 131–134. [Google Scholar] [CrossRef]
- Hino, T.; Yamauchi, Y.; Hirohata, Y. Helium retention of plasma facing materials. J. Nucl. Mater. 1999, 266–269, 538–541. [Google Scholar] [CrossRef]
- Fu, Z.; Yoshida, N.; Iwakiri, H.; Xu, Z. Thermal desorption and surface modification of He+ implanted into tungsten. J. Nucl. Mater. 2004, 333, 692–696. [Google Scholar] [CrossRef]
- Miyazaki, H.; Suzuki, T.; Yano, T.; Iseki, T. Effects of thermal annealing on the macroscopic dimension and lattice parameter of heavily neutron-irradiated silicon carbide. J. Nucl. Sci. Technol. 1992, 29, 656–663. [Google Scholar] [CrossRef]
- Itoh, H.; Hayakawa, N.; Nashiyama, I.; Sakuma, E. Electron spin resonance in electron-irradiated 3C-SiC. J. Appl. Phys. 1989, 66, 4529. [Google Scholar] [CrossRef]
Sample | 200 keV H2+ | 400 keV He+ | Annealing Conditions | |
---|---|---|---|---|
5 × 1016 H2+/cm2 | 1 × 1017 H2+/cm2 | 1 × 1017 He+/cm2 | ||
1 | √ | − | − | at 900 °C for 30 min |
2 | − | √ | − | at 900 °C for 30 min |
3 | − | − | √ | at 1500 °C for 30 min |
4 | √ | − | √ | at 900 °C for 30 min |
Sample | a (μm) | w0 (μm) | h (μm) |
---|---|---|---|
1 | 28.7 ± 13.0 | 1.1 ± 0.4 | 1.4 ± 0.1 |
2 | 21.6 ± 8.0 | 0.5 ± 0.2 | 1.4 ± 0.1 |
4 | 9.6 ± 4.0 | 0.9 ± 0.4 | 1.4 ± 0.1 |
Sample | Thickness (μm) | Elastic Modulus (GPa) [31,32] | ||
---|---|---|---|---|
1 | 2 | 4 | ||
Surface layer | 1.200 | 1.15 | 0.850 | 520 |
Irradiated layer | 0.20 | 0.250 | 0.550 | 306 |
Substrate layer * | 30 | 30 | 30 | 520 |
Sample | Gas Pressure, p (MPa) | (GPa) | (GPa) | |
---|---|---|---|---|
Theoretical Calculation | FEM Simulation | |||
1 | 11.8 | 13.4 | 0.74 | 2.8 |
2 | 16.5 | 14.2 | 0.8 | 2.1 |
4 | 689.5 | 573 | 6.3 | 15.2 |
Sample | V (m3) | S (m2) | n | N (Ions/cm2) |
---|---|---|---|---|
1 | 9.5 × 10−16 | 2.6 × 10−9 | 7.6 × 1011 | 2.9 × 1016 |
2 | 2.4 × 10−16 | 2.9 × 10−10 | 2.1 × 1011 | 8.0 × 1015 |
4 | 8.7 × 10−17 | 1.5 × 10−9 | 1.2 × 1012 | 4.7 × 1016 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Q.; Ran, G.; Zhou, W.; Ye, C.; Feng, Q.; Li, N. Investigation of Surface Morphology of 6H-SiC Irradiated with He+ and H2+ Ions. Materials 2018, 11, 282. https://doi.org/10.3390/ma11020282
Shen Q, Ran G, Zhou W, Ye C, Feng Q, Li N. Investigation of Surface Morphology of 6H-SiC Irradiated with He+ and H2+ Ions. Materials. 2018; 11(2):282. https://doi.org/10.3390/ma11020282
Chicago/Turabian StyleShen, Qiang, Guang Ran, Wei Zhou, Chao Ye, Qijie Feng, and Ning Li. 2018. "Investigation of Surface Morphology of 6H-SiC Irradiated with He+ and H2+ Ions" Materials 11, no. 2: 282. https://doi.org/10.3390/ma11020282
APA StyleShen, Q., Ran, G., Zhou, W., Ye, C., Feng, Q., & Li, N. (2018). Investigation of Surface Morphology of 6H-SiC Irradiated with He+ and H2+ Ions. Materials, 11(2), 282. https://doi.org/10.3390/ma11020282