Next Article in Journal
Composite Laser Ceramics by Advanced Bonding Technology
Next Article in Special Issue
Nanogels for Pharmaceutical and Biomedical Applications and Their Fabrication Using 3D Printing Technologies
Previous Article in Journal
Reduction and Removal of Chromium VI in Water by Powdered Activated Carbon
Previous Article in Special Issue
Anticancer Applications of Nanostructured Silica-Based Materials Functionalized with Titanocene Derivatives: Induction of Cell Death Mechanism through TNFR1 Modulation
Article Menu
Issue 2 (February) cover image

Export Article

Open AccessReview
Materials 2018, 11(2), 270; https://doi.org/10.3390/ma11020270

Nanoparticle-Based Strategies to Treat Neuro-Inflammation

INSERM, U1043, CNRS, U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse-Purpan, F-31300 Toulouse, France
*
Author to whom correspondence should be addressed.
Received: 29 December 2017 / Revised: 2 February 2018 / Accepted: 6 February 2018 / Published: 9 February 2018
(This article belongs to the Special Issue Nanomaterials for Biomedical Applications)
Full-Text   |   PDF [520 KB, uploaded 9 February 2018]   |  

Abstract

Neuro-inflammation is a pivotal physio-pathological feature of brain disorders, including neurodegenerative diseases. As such, it is a relevant therapeutic target against which drugs have to be proposed. Targeting neuro-inflammation implies crossing the Blood-Brain Barrier (BBB) to reach the Central Nervous System (CNS). Engineered nanoparticles (ENPs) are promising candidates to carry and deliver drugs to the CNS by crossing the BBB. There are several strategies to design ENPs intended for crossing through the BBB. Herein, we first put nanotechnologies back in their historical context and introduce neuro-inflammation and its consequences in terms of public health. In a second part, we explain how ENPs can get access to the brain and review this area by highlighting recent papers in the field. Finally, after pointing out potential guidelines for preclinical studies involving ENPs, we conclude by opening the debate on the questions of nanosafety and toxicity of these ENPs and in particular on ecotoxicity related to regulatory issues and public concerns. View Full-Text
Keywords: nanotechnology; nanoparticles; neuro-inflammation; blood-brain barrier; nanosafety nanotechnology; nanoparticles; neuro-inflammation; blood-brain barrier; nanosafety
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Poupot, R.; Bergozza, D.; Fruchon, S. Nanoparticle-Based Strategies to Treat Neuro-Inflammation. Materials 2018, 11, 270.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Materials EISSN 1996-1944 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top