Impact of Electrode Surface Morphology in ZnO-Based Resistive Random Access Memory Fabricated Using the Cu Chemical Displacement Technique
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ahn, J.; Kim, T.W. Threshold Voltage Shift Variation of Vertical NAND Flash Memory Devices Dependent on Polysilicon Channel Layer Thickness. J. Nanosci. Nanotechnol. 2017, 17, 7331–7334. [Google Scholar] [CrossRef]
- Wu, C.-Y.; Huang, H.Y.; Wu, C.-C. Low-Temperature Formed Quaternary NiZrSiGe Nanocrystal Memory. Int. J. Electrochem. Sic. 2015, 10, 6500–6508. [Google Scholar]
- Wu, C.-C.; Yang, W.-L.; Chang, Y.-M.; Liu, S.-H.; Hsiao, Y.-P. Plasma-Enhanced Storage Capability of SONOS Flash Memory. Int. J. Electrochem. Sci. 2013, 8, 6678–6685. [Google Scholar]
- Kan, J.J.; Park, C.; Ching, C.; Ahn, J.; Xie, Y.; Pakala, M.; Kang, S.H. A Study on Practically Unlimited Endurance of STT-MRAM. IEEE Trans. Electron Devices 2017, 64, 3639–3646. [Google Scholar] [CrossRef]
- Huang, F.; Wang, Y.; Liang, X.; Qin, J.; Zhang, Y.; Yuan, X.F.; Wang, Z.; Peng, B.; Deng, L.J.; Liu, Q.; et al. HfO2-Based Highly Stable Radiation-Immune Ferroelectric Memory. IEEE Electron Device Lett. 2017, 38, 330–333. [Google Scholar] [CrossRef]
- Kim, E.; Kang, N.S.; Yang, H.J.; Sutou, Y.; Song, Y.H. Novel device structure for phase change memory toward low-current operation. Jpn. J. Appl. Phys. 2015, 54, 094302. [Google Scholar] [CrossRef]
- Liu, S.H.; Yang, W.L.; Wu, C.C.; Chao, T.S.; Ye, M.R.; Su, Y.Y.; Wang, P.Y.; Tsai, M.J. High-Performance Polyimide-Based ReRAM for Nonvolatile Memory Application. IEEE Electron Device Lett. 2013, 34, 123–125. [Google Scholar] [CrossRef]
- Gong, T.C.; Luo, Q.; Xu, X.X.; Yuan, P.; Ma, H.L.; Chen, C.B.; Liu, Q.; Long, S.B.; Lv, H.B.; Liu, M. Uniformity and Retention Improvement of TaOx-Based Conductive Bridge Random Access Memory by CuSiN Interfacial Layer Engineering. IEEE Electron Device Lett. 2017, 38, 1232–1235. [Google Scholar] [CrossRef]
- Portal, J.M.; Bocquet, M.; Onkaraiah, S.; Moreau, M.; Aziza, H.; Deleruyelle, D.; Torki, K.; Vianello, E.; Levisse, A.; Giraud, B.; et al. Design and Simulation of a 128 kb Embedded Nonvolatile Memory Based on a Hybrid RRAM (HfO2)/28 nm FDSOI CMOS Technology. IEEE Trans. Nanotechnol. 2017, 16, 677–686. [Google Scholar] [CrossRef]
- Hsiao, Y.-P.; Yang, W.-L.; Wu, C.-C.; Lin, L.-M.; Chin, F.-T.; Lin, Y.-H.; Yang, K.-L. Improving high-resistance state uniformity and leakage current for polyimide-based resistive switching memory by rubbing post-treatment. Jpn. J. Appl. Phys. 2016, 55, 01AA09. [Google Scholar] [CrossRef]
- Hsiao, Y.-P.; Yang, W.-L.; Lin, L.-M.; Chin, F.-T.; Lin, Y.-H.; Yang, K.-L.; Wu, C.-C. Improving retention properties by thermal imidization for polyimide-based nonvolatile resistive random access memories. Microelectron. Reliab. 2015, 55, 2188–2197. [Google Scholar] [CrossRef]
- Banerjee, W.; Liu, Q.; Long, S.B.; Lv, H.B.; Liu, M. Crystal that remembers: Several ways to utilize nanocrystals in resistive switching memory. J. Phys. D Appl. Phys. 2017, 50, 303002. [Google Scholar] [CrossRef]
- Chen, J.Y.; Huang, C.W.; Chiu, C.H.; Huang, Y.T.; Wu, W.W. Switching Kinetic of VCM-Based Memristor: Evolution and Positioning of Nanofilament. Adv. Mater. 2015, 27, 5028–5033. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, W.; Li, Q.J.; Zhao, X.L.; Li, N.; Xu, H.; Liu, Q.; Liu, M. Highly improved resistive switching performances of the self-doped Pt/HfO2:Cu/Cu devices by atomic layer deposition. Sci. China Phys. Mech. Astron. 2016, 59, 127311. [Google Scholar] [CrossRef]
- Kim, H.J.; Yoon, K.J.; Park, T.H.; Kim, H.J.; Kwon, Y.J.; Shao, X.L.; Kwon, D.E.; Kim, Y.M.; Hwang, C.S. Filament Shape Dependent Reset Behavior Governed by the Interplay between the Electric Field and Thermal Effects in the Pt/TiO2/Cu Electrochemical Metallization Device. Adv. Electron. Mater. 2017, 3, 1600404. [Google Scholar] [CrossRef]
- Chin, F.T.; Lin, Y.H.; You, H.C.; Yang, W.L.; Lin, L.M.; Hsiao, Y.P.; Ko, C.M.; Chao, T.S. Advanced Cu chemical displacement technique for SiO2-based electrochemical metallization ReRAM application. Nanoscale Res. Lett. 2014, 9, 592. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.M.; Yang, W.L.; Lin, Y.H.; Hsiao, Y.P.; Chin, F.T.; Kao, M.F. A novel nanoscale-crossbar resistive switching memory using a copper chemical displacement technique. Phys. Status Solidi A 2017, 214, 1600595. [Google Scholar] [CrossRef]
- Sharma, Y.; Pavunny, S.P.; Fachini, E.; Scott, J.F.; Katiyar, R.S. Nonpolar resistive memory switching with all four possible resistive switching modes in amorphous LaHoO3 thin films. J. Appl. Phys. 2015, 118, 094506. [Google Scholar] [CrossRef]
- Sharma, Y.; Misra, P.; Pavunny, S.P.; Katiyar, R.S. Multilevel unipolar resistive memory switching in amorphous SmGdO3 thin film. Appl. Phys. Lett. 2014, 104, 073501. [Google Scholar] [CrossRef]
- Katiyar, R.K.; Sharma, Y.; Diestra, D.G.B.; Misra, P.; Kooriyattil, S.; Pavunny, S.P.; Morell, G.; Weiner, B.R.; Scott, J.F.; Katiyar, R.S. Unipolar resistive switching in planar Pt/BiFeO3/Pt structure. AIP Adv. 2015, 5, 037109. [Google Scholar] [CrossRef]
- Zhai1, H.; Kong, J.; Yang, J.; Xu, J.; Xu, Q.; Sun, H.; Li, A.; Wu, D. Resistive Switching Properties and Failure Behaviors of (Pt, Cu)/Amorphous ZrO2/Pt Sandwich Structures. J. Mater. Sci. Technol. 2016, 32, 676–680. [Google Scholar] [CrossRef]
- Jeon, H.; Park, J.; Jang, W.; Kim, H.; Song, H.; Kim, H.; Seo, H.; Jeon, H. Resistive switching behaviors of Cu/TaOx/TiN device with combined oxygen vacancy/copper conductive filaments. Curr. Appl. Phys. 2015, 15, 1005–1009. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.-C.; You, H.-C.; Lin, Y.-H.; Yang, C.-J.; Hsiao, Y.-P.; Liao, T.-P.; Yang, W.-L. Impact of Electrode Surface Morphology in ZnO-Based Resistive Random Access Memory Fabricated Using the Cu Chemical Displacement Technique. Materials 2018, 11, 265. https://doi.org/10.3390/ma11020265
Wu C-C, You H-C, Lin Y-H, Yang C-J, Hsiao Y-P, Liao T-P, Yang W-L. Impact of Electrode Surface Morphology in ZnO-Based Resistive Random Access Memory Fabricated Using the Cu Chemical Displacement Technique. Materials. 2018; 11(2):265. https://doi.org/10.3390/ma11020265
Chicago/Turabian StyleWu, Chi-Chang, Hsin-Chiang You, Yu-Hsien Lin, Chia-Jung Yang, Yu-Ping Hsiao, Tun-Po Liao, and Wen-Luh Yang. 2018. "Impact of Electrode Surface Morphology in ZnO-Based Resistive Random Access Memory Fabricated Using the Cu Chemical Displacement Technique" Materials 11, no. 2: 265. https://doi.org/10.3390/ma11020265
APA StyleWu, C.-C., You, H.-C., Lin, Y.-H., Yang, C.-J., Hsiao, Y.-P., Liao, T.-P., & Yang, W.-L. (2018). Impact of Electrode Surface Morphology in ZnO-Based Resistive Random Access Memory Fabricated Using the Cu Chemical Displacement Technique. Materials, 11(2), 265. https://doi.org/10.3390/ma11020265