Effect of Applied Stress on T91 Steel Performance in Liquid Lead at 400 °C
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Specimens
2.3. Experiment
2.3.1. Constant Extension Rate Tensile Test
2.3.2. Three-Point Bend Exposure Test
2.4. Post-Test Evaluation
3. Results
3.1. Bend Specimens
3.1.1. Surface
3.1.2. Cross Section
3.2. Tapered Specimens
3.2.1. Surface
3.2.2. Cross Section
4. Discussion
4.1. Experiments under Static and Quasi-Static Conditions
4.2. LME Crack Initiation Condition
5. Conclusions
- Despite the different oxygen contents and exposure times, during static and quasi-static (CERT) experiments, the double-layer oxide was developed. The oxide thickness values in all specimens were in a range from 1.4 m up to 5 m, in localized areas after the long-term exposure.
- The load level applied in a static mode (up to 110% of yield strength) was not sufficient to damage the oxide layer.
- The load level applied in CERT tests with applied strain rates from 2 × 10−5 to 4 × 10−3s−1 was sufficient to break only the oxide layers built at liquid Pb with 1 × 10−6 wt. % oxygen, however the liquid lead did not reach the bare metal.
- No effect of the ground and polished surface was observed.
- Temperatures 350–400 °C
- Stress above 680 MPa, plastic strain more than 5%, and strain rate about 1–100 × 10−6 s−1.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cinotti, L.; Smith, C.F.; Sekimoto, H.; Mansani, L.; Reale, M.; Sienickie, J.J. Lead-cooled system design and challenges in the frame of Generation IV International Forum. J. Nucl. Mater. 2011, 415, 245–253. [Google Scholar] [CrossRef]
- Auger, T.; Lorang, G.; Guérin, S.; Pastol, J.-L.; Gorse, D. Effect of contact conditions on embrittlement of T91 steel by lead–bismuth. J. Nucl. Mater. 2004, 335, 227–231. [Google Scholar] [CrossRef] [Green Version]
- Van den Bosch, J.; Sapundjiev, D.; Almazouzi, A. Effects of temperature and strain rate on the mechanical properties of T91 material tested in liquid lead bismuth eutectic. J. Nucl. Mater. 2006, 356, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Vogt, J.-B.; Verleene, A.; Serre, I.; Legris, A. Mechanical behaviour of the T91 martensitic steel under monotonic and cyclic stressing in liquid metals. J. Nucl. Mater. 2008, 335, 222–226. [Google Scholar] [CrossRef]
- Di Gabriele, F.; Doubkova, A.; Hojna, A. Investigation of the sensitivity to EAC of steel T91 in contact with liquid LBE. J. Nucl. Mater. 2008, 376, 307–311. [Google Scholar] [CrossRef]
- Long, B.; Dai, Y. Investigation of LBE embrittlement effects on the fracture properties of T91. J. Nucl. Mater. 2008, 376, 341–345. [Google Scholar] [CrossRef]
- Coen, G.; Van den Bosch, J.; Almazouzi, A.; Degrieck, J. Investigation of the effect of lead–bismuth eutectic on the fracture properties of T91 and 316L. J. Nucl. Mater. 2010, 398, 122–128. [Google Scholar] [CrossRef]
- Auger, T.; Gorse, D.; Hamouche-Hadjem, Z.; Van den Bosch, J.; Coen, G.; Almazouzi, A.; Hojna, A.; Dalikova, K.; Di Gabriele, F.; Serrano, M.; et al. Fracture mechanics behaviour of the T91 martensitic steel in contact with liquid lead-bismuth eutectic for application in an accelerator driven system. J. Nucl. Mater. 2011, 415, 293–301. [Google Scholar] [CrossRef]
- Gorse, D.; Auger, T.; Vogt, J.-B.; Serre, I.; Weisenburger, A.; Gessi, A.; Agostini, P.; Fazio, C.; Hojna, A.; Di Gabriele, F.; et al. Influence of liquid lead and lead-bismuth eutectic on tensile, fatigue and creep properties of ferritic/martensitic and austenitic steels for transmutation systems. J. Nucl. Mater. 2011, 415, 284–292. [Google Scholar] [CrossRef]
- Hojna, A.; Di Gabriele, F. On the kinetics of LME for the ferritic martensitic steel T91 immersed in liquid PbBi eutectic. J. Nucl. Mater. 2011, 413, 21–29. [Google Scholar] [CrossRef]
- Gong, X.; Marmy, P.; Verlinden, B.; Wevers, M.; Seefeldt, M. Low cycle fatigue behavior of a modified 9Cr–1Mo ferritic–martensitic steel in lead–bismuth eutectic at 350 °C—effects of oxygen concentration in the liquid metal and strain rate. Corros. Sci. 2015, 94, 377–391. [Google Scholar] [CrossRef]
- Nicaise, G.; Legris, A.; Vogt, J.B.; Foct, J. Embrittlement of the martensitic steel 91 tested in liquid lead. J. Nucl. Mater. 2001, 296, 256–264. [Google Scholar] [CrossRef]
- Hojna, A.; Di Gabriele, F.; Klecka, J.; Burda, J. Behaviour of the steel T91 under uniaxial and multiaxial slow loading in contact with liquid Pb. J. Nucl. Mater. 2015, 466, 292–301. [Google Scholar] [CrossRef]
- Di Gabriele, F.; Hojná, A.; Chocholousek, M.; Klecka, J. Behavior of the steel T91 under multi axial loading in contact with liquid and solid Pb. Metals 2017, 7, 342. [Google Scholar] [CrossRef]
- Schroer, C.; Konys, J. Physical Chemistry of Corrosion and Oxygen Control in Liquid Lead and Lead-Bismuth Eutectic; Forschungszentrum: Karlsruhe, Germany, 2007. [Google Scholar]
- Weisenburger, A.; Schroer, C.; Jianu, A.; Heinzel, A.; Konys, J.; Steiner, H.; Mueller, G.; Fazio, C.; Gessi, A.; Babayan, S.; et al. Long term corrosion on T91 and AISI1 316L steel in flowing lead alloy and corrosion protection barrier development: Experiments and models. J. Nucl. Mater. 2011, 415, 260–269. [Google Scholar] [CrossRef]
- Schroer, C.; Wedemeyer, O.; Skrypnik, A.; Novotny, J.; Konys, J. Corrosion kinetics of Steel T91 in flowing oxygen-containing lead-bismuth eutectic at 450 °C. J. Nucl. Mater. 2012, 431, 105–112. [Google Scholar] [CrossRef]
- Muller, G.; Heinzel, A.; Konys, J.; Schumacher, G.; Weisenburger, A.; Zimmermann, F.; Engelko, V.; Rusanov, A.; Markov, V. Behavior of steels in flowing liquid PbBi eutectic alloy at 420–600 °C after 4000–7200 h. J. Nucl. Mater. 2004, 335, 163–168. [Google Scholar] [CrossRef]
- Gong, X.; Marmy, P.; Yin, Y. The role of oxide films in preventing liquid metal embrittlement of T91 steel exposed to liquid lead-bismuth eutectic. J. Nucl. Mater. 2018, 509, 401–407. [Google Scholar] [CrossRef]
- Yurechko, M.; Schroer, C.; Skrypnik, A.; Wedemeyer, O.; Tsisar, V.; Konys, J. Steel T91 subjected to static stress in lead-bismuth eutectic at 450–550 °C and low oxygen concentration. J. Nucl. Mater. 2018, 512, 423–439. [Google Scholar] [CrossRef]
- Duchon, J.; Halodova, P.; Lorincik, J.; Di Gabriele, F.; Hojna, A. Characterisation of oxides by advanced techniques. Acta Metall. Slovaca 2018, 24, 13–19. [Google Scholar] [CrossRef]
Fe | C | Cr | Mo | Mn | Si | Ni | V | Cu | Nb | P | Al | Ti | S | N |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bal. | 0.102 | 8.895 | 0.889 | 0.401 | 0.235 | 0.121 | 0.202 | 0.080 | 0.079 | 0.019 | 0.010 | 0.004 | 0.0007 | 0.048 |
T (°C) | Rp0.2 (MPa) | Rm (MPa) | Am (%) | A (%) | Z (%) |
---|---|---|---|---|---|
25 | 575 | 718 | 6.7 | 22 | 71 |
400 | 456 | 562 | 2.6 | 15 | - |
No. | Air/Pb | Oxygen (wt. %) | Test Rate (m/s) | Test Stop at | fpl (mm) | εmax (%) | σmax (MPa) | Lx (mm) | εLx 1 (%) | σth 2 (MPa) | LME Y/N |
---|---|---|---|---|---|---|---|---|---|---|---|
T29 | Air | n. a. | R0: 2 × 10−4 | rupture | 2.40 | 9.2 | 642 | n. a. | n. a. | n. a. | n. a. |
T30 | Air | n. a. | R0: 2 × 10−4 | max. | 0.60 | 2.3 | 606 | n. a. | n. a. | n. a. | n. a. |
T31 | Air | n. a. | R1: 2 × 10−6 | max. | 0.76 | 2.9 | 655 | n. a. | n. a. | n. a. | n. a. |
T32 | Air | n. a. | R2: 2 × 10−8 | max. | 0.66 | 2.5 | 660 | n. a. | n. a. | n. a. | n. a. |
T36 | Pb | 1 × 10−6 | R0: 2 × 10−4 | max. | 1.02 | 3.9 | 577 | 4.3 | 2.1 | 518 | N |
T37 | Pb | 1 × 10−6 | R1: 2 × 10−6 | max. | 0.85 | 3.3 | 597 | 4.3 | 1.7 | 517 | N |
T38 | Pb | 8 × 10−7 | R2: 2 × 10−8 | max. | 0.87 | 3.3 | 584 | 4.5 | 2.7 3 | 531 | N |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hojná, A.; Di Gabriele, F.; Chocholoušek, M.; Rozumová, L.; Vít, J. Effect of Applied Stress on T91 Steel Performance in Liquid Lead at 400 °C. Materials 2018, 11, 2512. https://doi.org/10.3390/ma11122512
Hojná A, Di Gabriele F, Chocholoušek M, Rozumová L, Vít J. Effect of Applied Stress on T91 Steel Performance in Liquid Lead at 400 °C. Materials. 2018; 11(12):2512. https://doi.org/10.3390/ma11122512
Chicago/Turabian StyleHojná, Anna, Fosca Di Gabriele, Michal Chocholoušek, Lucia Rozumová, and Jan Vít. 2018. "Effect of Applied Stress on T91 Steel Performance in Liquid Lead at 400 °C" Materials 11, no. 12: 2512. https://doi.org/10.3390/ma11122512
APA StyleHojná, A., Di Gabriele, F., Chocholoušek, M., Rozumová, L., & Vít, J. (2018). Effect of Applied Stress on T91 Steel Performance in Liquid Lead at 400 °C. Materials, 11(12), 2512. https://doi.org/10.3390/ma11122512