Next Article in Journal
Low-Stress Mechanical Property Study of Various Functional Fabrics for Tactile Property Evaluation
Previous Article in Journal
Direct van der Waals Epitaxy of Crack-Free AlN Thin Film on Epitaxial WS2
Article Menu

Article Versions

Export Article

Open AccessArticle
Materials 2018, 11(12), 2465; https://doi.org/10.3390/ma11122465

Preparation of Nano-SiO2/Al2O3/ZnO-Blended PVDF Cation-Exchange Membranes with Improved Membrane Permselectivity and Oxidation Stability

1
Engineering Research Center of Water Resources Utilization in Cold and Drought Region, Ministry of Education, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, No. 88, Anning West Road, Lanzhou 730070, China
2
Urban and Rural Planning Bureau of Mudanjiang, No. 41, Wusuli Road, Mudanjiang 157000, China
*
Author to whom correspondence should be addressed.
Received: 9 November 2018 / Revised: 29 November 2018 / Accepted: 1 December 2018 / Published: 4 December 2018
PDF [1240 KB, uploaded 4 December 2018]

Abstract

Ion exchange membranes are used in practically every industry; however, most of them have defects such as low permeability and poor oxidation resistance. In this paper, cation-exchange membranes were prepared with poly (vinylidene fluoride) (PVDF) blended with nano-SiO2, nano-Al2O3 and nano-ZnO. Sulfonic acid groups were injected into the membrane prepared by styrene grafting and sulfonation. The methods used for characterizing the prepared membranes were Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and electrochemical measurements. Membrane performance, such as the ion exchange capacity (IEC), water uptake (WU), transport number, membrane permselectivity, membrane resistance, functional groups, and morphology were also evaluated. The hydrophilia, IEC, and permselectivity of cation-exchange membranes depended on the nanoparticle content of the membrane matrix. High transport property values were obtained, which increased with increasing nano-SiO2/Al2O3/ZnO weight fractions. Finally, the cation-exchange membranes prepared with 1.5% nano-SiO2, 2.0% nano-Al2O3 or 2.0% nano-ZnO all exhibited excellent membrane properties, including membrane permselectivity (PVDF/2% ZnO-g-PSSA membranes, 94.9%), IEC (PVDF/2% Al2O3-g-PSSA membranes, 2.735 mmol·g−1), and oxidation resistance (PVDF/1.5% SiO2-g-PSSA membranes, 2.33%). They can be used to separate applications in a variety of different areas, such as water treatment, electro-driven separation, heavy metal smelting, or other electrochemical processes.
Keywords: poly (vinylidene fluoride); cation-exchange membrane; nano-SiO2/Al2O3/ZnO; membrane performance poly (vinylidene fluoride); cation-exchange membrane; nano-SiO2/Al2O3/ZnO; membrane performance
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Zhang, X.; Zhou, J.; Zou, X.; Wang, Z.; Chu, Y.; Wang, S. Preparation of Nano-SiO2/Al2O3/ZnO-Blended PVDF Cation-Exchange Membranes with Improved Membrane Permselectivity and Oxidation Stability. Materials 2018, 11, 2465.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Materials EISSN 1996-1944 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top