High Electrochemical Performance from Oxygen Functional Groups Containing Porous Activated Carbon Electrode of Supercapacitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Characterization
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. Textural Characterization
3.2. Surface Chemistry Property
3.3. Electrochemical Performance
3.4. Energy Storage Mechanism Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, W.; Feng, Y.Y.; Xiao, D.; Yuan, H.Y. Fabrication of microporous and mesoporous carbon spheres for high-performance supercapacitor electrode materials. Int. J. Energy Res. 2015, 39, 805–811. [Google Scholar] [CrossRef]
- Lu, S.; Corzine, K.A.; Ferdowsi, M. A new battery/ultracapacitor energy storage system design and its motor drive integration for hybrid electric vehicles. IEEE Trans. Veh. Technol. 2007, 56, 1516–1523. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.Y.; Huang, H.B.; Yang, W.; Huang, W.L.; Xia, Y.L.; Yi, Y.J.; Zhang, X.J.; Zhang, S.F. Sulfur-doped microporous carbons developed from coal for enhanced capacitive performances of supercapacitor electrodes. Integr. Ferroelectr. 2018, 188, 44–56. [Google Scholar] [CrossRef]
- Zhu, D.Z.; Wang, Y.W.; Lu, W.J.; Zhang, H.; Song, Z.Y.; Luo, D.; Gan, L.H.; Liu, M.X.; Sun, D.M. A novel synthesis of hierarchical porous carbons from interpenetrating polymer networks for high performance supercapacitor electrodes. Carbon 2017, 111, 667–674. [Google Scholar] [CrossRef]
- Hu, C.C.; Chang, K.H.; Lin, M.C.; Wu, Y.T. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 2006, 6, 2690–2695. [Google Scholar] [CrossRef]
- Bi, R.R.; Wu, X.L.; Cao, F.F.; Jiang, L.Y.; Guo, Y.G.; Wan, L.J. Highly dispersed RuO2 nanoparticles on carbon nanotubes: Facile synthesis and enhanced supercapacitance performance. J. Phys. Chem. C 2010, 114, 2448–2451. [Google Scholar] [CrossRef]
- Lv, Y.Y.; Wu, Z.X.; Qian, X.F.; Fang, Y.; Feng, D.; Xia, Y.Y.; Tu, B.; Zhao, D.Y. Site-specific carbon deposition for hierarchically ordered core/shell-structured graphitic carbon with remarkable electrochemical performance. Chem Sus Chem 2013, 6, 1938–1944. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, Y.S.; Qian, M.; He, X.N.; Redepenning, J.; Goodman, P.; Li, H.M.; Jiang, L.; Lu, Y.F. Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes. Carbon 2013, 51, 52–58. [Google Scholar] [CrossRef]
- Xu, J.; Ma, C.; Cao, J.; Chen, Z. Facile synthesis of core-shell nanostructured hollow carbon nanospheres@nickel cobalt double hydroxides as high-performance electrode materials for supercapacitors. Dalton Trans. 2017, 46, 3276–3283. [Google Scholar] [CrossRef]
- Huang, Y.A.; Hu, S.; Zuo, S.; Xu, Z.; Han, C.; Shen, J. Mesoporous carbon materials prepared from carbohydrates with a metal chloride template. J. Mater. Chem. 2009, 19, 7759–7764. [Google Scholar] [CrossRef]
- Oschatz, M.; Borchardt, L.; Thommes, M.; Cychosz, K.A.; Senkovska, I.; Klein, N.; Frind, R.; Leistner, M.; Presser, V.; Gogotsi, Y.; et al. Carbide-derived carbon monoliths with hierarchical pore architectures. Angew. Chem. Int. Ed. 2012, 51, 7577–7580. [Google Scholar] [CrossRef] [PubMed]
- Hulicova-Jurcakova, D.; Seredych, M.; Lu, G.Q.; Bandosz, T.J. Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater. 2009, 19, 438–447. [Google Scholar] [CrossRef]
- Li, N.; Ma, X.L.; Zha, Q.F.; Kim, K.; Chen, Y.S.; Song, C.S. Maximizing the number of oxygen-containing functional groups on activated carbon by using ammonium persulfate and improving the temperature-programmed desorption characterization of carbon surface chemistry. Carbon 2011, 49, 5002–5013. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Yang, W.; Liu, D.J.; Chu, W. Surface modification of bituminous coal and its effects on methane adsorption. Chin. J. Chem. 2013, 31, 1102–1108. [Google Scholar] [CrossRef]
- Estrade-Szwarckopf, H. XPS photoemission in carbonaceous materials: A “defect” peak beside the graphitic asymmetric peak. Carbon 2004, 42, 1713–1721. [Google Scholar] [CrossRef]
- Bao, J.; Liang, C.; Lu, H.; Lin, H.; Shi, Z.; Feng, S.; Bu, Q. Facile fabrication of porous carbon microtube with surrounding carbon skeleton for long-life electrochemical capacitive energy storage. Energy 2018, 155, 899–908. [Google Scholar] [CrossRef]
- Frackowiak, E.; Beguin, F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001, 39, 937–950. [Google Scholar] [CrossRef]
- Wei, X.; Jiang, X.; Wei, J.; Gao, S. Functional groups and pore size distribution do matter to hierarchically porous carbons as high-rate-performance supercapacitors. Chem. Mater. 2016, 28, 445–458. [Google Scholar] [CrossRef]
- Hwang, Y.H.; Lee, S.M.; Kim, Y.J.; Kahng, Y.H.; Lee, K. A new approach of structural and chemical modification on graphene electrodes for high-performance supercapacitors. Carbon 2016, 100, 7–15. [Google Scholar] [CrossRef]
- He, Y.; Zhang, Y.; Li, X.; Lv, Z.; Wang, X.; Liu, Z.; Huang, X. Capacitive mechanism of oxygen functional groups on carbon surface in supercapacitors. Electrochim. Acta 2018, 282, 618–625. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.Y.; Xiao, J.; Wang, W.; Engelhard, M.; Chen, X.; Nie, Z.; Gu, M.; Saraf, L.V.; Exarhos, G.; Zhang, J.G.; et al. Surface-driven sodium ion energy storage in nanocellular carbon foams. Nano Lett. 2013, 13, 3909–3914. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.C.; Lin, W.H.; Chang, Y.C. The influence of treatment duration on multi-walled carbon nanotubes functionalized by H2SO4/HNO3 oxidation. Appl. Surf. Sci. 2011, 257, 2401–2410. [Google Scholar] [CrossRef]
Sample | SBET (m2/g) | Vmic (cm3/g) | Vmeso (cm3/g) | Vt (cm3/g) | Average Pore Diameter (nm) |
---|---|---|---|---|---|
AC-o | 901.4 | 0.373 | 0.163 | 0.596 | 2.65 |
AC-s | 708.7 | 0.290 | 0.109 | 0.443 | 2.50 |
AC-a | 490.8 | 0.196 | 0.084 | 0.311 | 2.53 |
AC-m | 489.3 | 0.200 | 0.078 | 0.310 | 2.54 |
Samples | C (%) | N (%) | O (%) | O/C (%) |
---|---|---|---|---|
AC-o | 94.41 | 0.65 | 4.94 | 5.23 |
AC-s | 93.11 | 0.54 | 6.35 | 6.82 |
AC-a | 87.55 | 0.69 | 11.76 | 13.43 |
AC-m | 85.99 | 0.74 | 13.28 | 15.44 |
Sample | Carboxyl (mmol/g) | Lactone (mmol/g) | Phenol (mmol/g) | Total Acidic Groups (mmol/g) | Total Basic Groups (mmol/g) |
---|---|---|---|---|---|
AC-o | 0.103 | 0.099 | 0.161 | 0.431 | 0.292 |
AC-s | 0.602 | 0.102 | 0.081 | 0.940 | 0.059 |
AC-a | 1.967 | 0.256 | 0.028 | 2.929 | - |
AC-m | 2.416 | 0.324 | 0.158 | 3.526 | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Li, Y.; Feng, Y. High Electrochemical Performance from Oxygen Functional Groups Containing Porous Activated Carbon Electrode of Supercapacitors. Materials 2018, 11, 2455. https://doi.org/10.3390/ma11122455
Yang W, Li Y, Feng Y. High Electrochemical Performance from Oxygen Functional Groups Containing Porous Activated Carbon Electrode of Supercapacitors. Materials. 2018; 11(12):2455. https://doi.org/10.3390/ma11122455
Chicago/Turabian StyleYang, Wen, Yanjie Li, and Yanyan Feng. 2018. "High Electrochemical Performance from Oxygen Functional Groups Containing Porous Activated Carbon Electrode of Supercapacitors" Materials 11, no. 12: 2455. https://doi.org/10.3390/ma11122455
APA StyleYang, W., Li, Y., & Feng, Y. (2018). High Electrochemical Performance from Oxygen Functional Groups Containing Porous Activated Carbon Electrode of Supercapacitors. Materials, 11(12), 2455. https://doi.org/10.3390/ma11122455