Sulfonitric Treatment of Multiwalled Carbon Nanotubes and Their Dispersibility in Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization of MWCNT Powders
2.3. Characterization of Aqueous MWCNT Dispersions
3. Results and Discussion
3.1. Nitrogen Adsorption Analyses
3.2. FT-IR Spectroscopy
3.3. XPS Characterization
3.4. Thermogravimetric Analysis
3.5. Raman Spectroscopy
3.6. The Dispersion of Sulfonitric Treated MWCNTs
3.6.1. The Relationship between the Concentration of MWCNTS and Absorbance
3.6.2. The Relationship between the Oxidation Degree and the Absorbance
3.7. The PSD of MWCNT Suspensions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siddique, R.; Mehta, A. Effect of carbon nanotubes on properties of cement mortars. Constr. Build. Mater. 2014, 50, 116–129. [Google Scholar] [CrossRef]
- Yu, M.F.; Lourie, O.; Dyer, M.J.; Moloni, K.; Kelly, T.F.; Ruoff, R.S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287, 637–640. [Google Scholar] [CrossRef] [PubMed]
- Walters, D.A.; Ericson, L.M.; Casavant, M.J.; Liu, J. Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl. Phys. Lett. 1999, 74, 3803–3805. [Google Scholar] [CrossRef]
- Hanus, M.J.; Harris, A.T. Nanotechnology innovations for the construction industry. Prog. Mater. Sci. 2013, 58, 1056–1102. [Google Scholar] [CrossRef]
- Tian, M.; Wang, W.; Liu, Y.; Jungjohann, K.L.; Harris, C.T.; Lee, Y.C.; Yang, R. A three-dimensional carbon nano-network for high performance lithium ion batteries. Nano Energy 2015, 11, 500–509. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yu, L.; Zhang, S.; Yuan, J.; Shi, L.; Zheng, L. Dispersion of multiwalled carbon nanotubes by ionic liquid-type gemini imidazolium surfactants in aqueous solution. Coll. Surf. A 2010, 359, 66–70. [Google Scholar] [CrossRef]
- Ma, P.C.; Siddiqui, N.A.; Marom, G.; Kim, J.K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Comp. Part A 2010, 41, 1345–1367. [Google Scholar] [CrossRef]
- Fogden, S.; Howard, C.A.; Heenan, R.K.; Skipper, N.T.; Shaffer, M.S. Scalable method for the reductive dissolution, purification, and separation of single-walled carbon nanotubes. ACS Nano 2012, 6, 54–62. [Google Scholar] [CrossRef]
- Parveen, S.; Rana, S.; Fangueiro, R.; Paiva, M.C. Microstructure and mechanical properties of carbon nanotube reinforced cementitious composites developed using a novel dispersion technique. Cem. Concr. Res. 2015, 73, 215–227. [Google Scholar] [CrossRef]
- Han, B.; Sun, S.; Ding, S.; Zhang, L.; Yu, X.; Ou, J. Review of nanocarbon-engineered multifunctional cementitious composites. Compos. A Appl. Sci. Manuf. 2015, 70, 69–81. [Google Scholar] [CrossRef]
- Molina-Sabio, M.; Gonçalves, M.; Rodríguez-Reinoso, F. Oxidation of activated carbon with aqueous solution of sodium dichloroisocyanurate: Effect on ammonia adsorption. Microporous Mesoporous Mater. 2011, 142, 577–584. [Google Scholar] [CrossRef] [Green Version]
- Bleda-Martínez, M.J.; Lozano-Castelló, D.; Morallón, E.; Cazorla-Amorósa, D.; Linares-Solano, A. Chemical and electrochemical characterization of porous carbon materials. Carbon 2006, 44, 2642–2651. [Google Scholar] [CrossRef] [Green Version]
- Zubizarreta, L.; Menéndez, J.A.; Job, N.; Marco-Lozar, J.P.; Pirard, J.P.; Pis, J.J.; Linares-Solano, A.; Cazorla-Amorós, D.; Arenillas, A. Ni-doped carbon xerogels for H2 storage. Carbon 2010, 48, 2722–2733. [Google Scholar] [CrossRef]
- Barrientos-Ramírez, S.; Montes de Oca-Ramírez, G.; Ramos-Fernández, E.V.; Sepúlveda-Escribano, A.; Pastor-Blas, M.M.; González-Montiel, A.; Rodríguez-Reinoso, F. Influence of the surface chemistry of activated carbons on the ATRP catalysis of methyl methacrylate polymerization. Appl. Catal. A 2011, 397, 225–233. [Google Scholar] [CrossRef]
- Mostazo-López, M.J.; Ruiz-Rosas, R.; Morallón, E.; Cazorla-Amorósa, D. Generation of nitrogen functionalities on activated carbons by amidation reactions and Hofmann rearrangement: Chemical and electrochemical characterization. Carbon 2015, 91, 252–265. [Google Scholar] [CrossRef]
- Kim, S.D.; Park, S.J.; Lee, Y.K. Chemical surface treatment for highly improved dispersibility of multi-walled carbon nanotubes in water. J. Dispers. Sci. Technol. 2008, 29, 426–430. [Google Scholar]
- Balasubramanian, K.; Burghard, M. Chemically functionalized carbon nanotubes. Small 2005, 1, 180–192. [Google Scholar] [CrossRef]
- Gojny, F.H.; Nastalczyk, J.; Roslaniec, Z.; Schulte, K. Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chem. Phys. Lett. 2003, 370, 820–824. [Google Scholar] [CrossRef]
- Karousis, N.; Tagmatarchis, N.; Tasis, D. Current progress on the chemical modification of carbon nanotubes. Chem. Rev. 2010, 110, 5366–5397. [Google Scholar] [CrossRef]
- Hui, H.; Zhao, B.; Itkis, M.E.; Haddon, R.C. Nitric acid purification of single-walled carbon nanotubes. J. Phys. Chem. B 2004, 107, 13838–13842. [Google Scholar] [CrossRef]
- MartíNez, M.T.; Calleja, M.A.; Benito, A.M.; Cochet, M.; Seeger, T.; Ansón, A.; Schreiber, J.; Gordon, C.; Marhic, C.; Chauvet, O.; et al. Sensitivity of single wall carbon nanotubes to oxidative processing: Structural modification, intercalation and functionalization. Carbon 2003, 41, 2247–2256. [Google Scholar] [CrossRef]
- Kukovecz, A.; Kramberger, Ch.; Holzinger, M.; Kuzmany, H.; Schalko, J.; Mannsberger, M.; Hirsch, A. On the stacking behavior of functionalized single-wall carbon nanotubes. J. Phys. Chem. B 2015, 106, 6374–6380. [Google Scholar] [CrossRef]
- Liu, L.; Qin, Y.; Guo, Z.X.; Zhu, D. Reduction of solubilized multi-walled carbon nanotubes. Carbon 2003, 41, 331–335. [Google Scholar] [CrossRef]
- Hayashi, S.; Handa, S.; Tsubokawa, N. Introduction of peroxide groups onto carbon black surface by radical trapping and radical graft polymerization of vinyl monomers initiated by the surface peroxide groups. J. Polym. Sci. A Polym. Chem. 2015, 34, 1589–1595. [Google Scholar] [CrossRef]
- Marega, R.; Accorsi, G.; Meneghetti, M.; Parisini, A.; Prato, M.; Bonifazi, D. Cap removal and shortening of double-walled and very-thin multi-walled carbon nanotubes under mild oxidative conditions. Carbon 2009, 47, 675–682. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Popova, I.; Yates, J.T.; Bronikowski, M.J.; Huffman, C.B.; Liu, J.; Smalley, R.E.; Hwu, H.; Chen, J. Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies. J. Am. Chem. Soc. 2001, 123, 10699–10704. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, K.J.; Gu, Z.; Peng, H.; Flor, E.L.; Hauge, R.H.; Smalley, R.E. Controlled oxidative cutting of single-walled carbon nanotubes. J. Am. Chem. Soc. 2005, 127, 1541–1547. [Google Scholar] [CrossRef]
- Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsisa, I.; Galiotisa, C. Chemical oxidation of multiwalled carbon nanotubes. Carbon 2008, 46, 833–840. [Google Scholar] [CrossRef]
- Avilés, F.; Cauich-Rodríguez, J.V.; Moo-Tah, L.; May-Pat, A.; Vargas-Coronado, R. Evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon 2009, 47, 2970–2975. [Google Scholar] [CrossRef]
- Hiura, H.; Ebbesen, T.W.; Tanigaki, K. Opening and purification of carbon nanotubes in high yields. Adv. Mater. 2010, 7, 275–276. [Google Scholar] [CrossRef]
- Chiu, W.M.; Chang, Y.A. Chemical modification of multiwalled carbon nanotube with the liquid phase method. J. Appl. Polym. Sci. 2008, 107, 1655–1660. [Google Scholar] [CrossRef]
- Zhang, J.; Zou, H.L.; Qing, Q.; Yang, Y.; Li, Q.; Liu, Z.; Guo, X.; Du, Z. Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes. J. Phys. Chem. B 2015, 107, 3712–3718. [Google Scholar] [CrossRef]
- Su, S.H.; Chiang, W.T.; Lin, C.; Yokoyama, M. Multi-wall carbon nanotubes: Purification, morphology and field emission performance. Phys. E Low Dimens. Syst. Nanostruct. 2008, 40, 2322–2326. [Google Scholar] [CrossRef]
- Rosca, I.D.; Watari, F.; Uo, M.; Akasaka, T. Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 2005, 43, 3124–3131. [Google Scholar] [CrossRef]
- Zhou, W.; Sasaki, S.; Kawasaki, A. Effective control of nanodefects in multiwalled carbon nanotubes by acid treatment. Carbon 2014, 78, 121–129. [Google Scholar] [CrossRef]
- Xing, Y.; Li, L.; Chusuei, C.; Hull, R.V. Sonochemical oxidation of multiwalled carbon nanotubes. Langmuir 2005, 21, 4185–4190. [Google Scholar] [CrossRef] [PubMed]
- Grossiord, N.; Regev, O.; Loos, J.; Meuldijk, J.; Koning, C.E. Time-dependent study of the exfoliation process of carbon nanotubes in aqueous dispersions by using UV-visible spectroscopy. Anal. Chem. 2005, 77, 5135–5139. [Google Scholar] [CrossRef]
- Yu, J.; Grossiord, N.; Koning, C.E.; Loos, J. Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon 2007, 45, 618–623. [Google Scholar] [CrossRef]
- Wang, L.; Liu, N.; Guo, Z.; Wu, D.; Chen, W.; Chang, Z.; Wang, J. Nitric acid-treated carbon fibers with enhanced hydrophilicity for candida tropicalis immobilization in xylitol fermentation. Materials 2016, 9, 206. [Google Scholar] [CrossRef]
- Gómez, S.; Rendtorff, N.M.; Aglietti, E.F.; Sakka, Y.; Suarez, G. Intensity of sulfonitric treatment on multiwall carbon nanotubes. Chem. Phys. Lett. 2017, 289, 135–141. [Google Scholar]
- Park, O.K.; Kim, N.H.; Yoo, G.H.; Rhee, K.Y.; Lee, J.H. Effects of the surface treatment on the properties of polyaniline coated carbon nanotubes/epoxy composites. Compos. B Eng. 2010, 41, 2–7. [Google Scholar] [CrossRef]
- Tang, M.; Dou, H.; Sun, K. One-step synthesis of dextran-based stable nanoparticles assisted by self-assembly. Polymer 2006, 47, 728–734. [Google Scholar] [CrossRef]
- Grandi, S.; Magistris, A.; Mustarelli, P.; Quartarone, E.; Tomasi, C.; Meda, L. Synthesis and characterization of SiO2–PEG hybrid materials. J. Non Cryst. Solids 2006, 352, 273–280. [Google Scholar] [CrossRef]
- Hou, P.; Liu, C.; Tong, Y.; Xu, S.; Liu, M.; Chen, H. Purification of single-walled carbon nanotubes synthesized by the hydrogen arc-discharge method. J. Mater. Res. 2001, 16, 2526–2529. [Google Scholar] [CrossRef]
- Flahaut, E.; Laurent, C.; Peigney, A. Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation. Carbon 2005, 43, 375–383. [Google Scholar] [CrossRef] [Green Version]
- Dresselhaus, M.S.; Dresselhaus, G.; Jorio, A. Raman spectroscopy of carbon nanotubes in 1997 and 2007. J. Phys. Chem. C 2007, 111, 17887–17893. [Google Scholar] [CrossRef]
- Chen, C.; Ogino, A.; Wang, X.; Nagatsu, M. Oxygen functionalization of multiwall carbon nanotubes by Ar/H2O plasma treatment. Diam. Relat. Mater. 2001, 20, 153–156. [Google Scholar] [CrossRef]
Type | Inside Diameter | Outside Diameter | Length | Density | Special Surface Area |
---|---|---|---|---|---|
CNT-1 | 3–10 nm | 8–30 nm | 10–50 μm | 2.1 g/cm3 | >110 cm2/g |
Samples | BET Surface Area (m2/g) | Average Pore Diameter (4V/A) (nm) | Total Pore Volume (cm3/g) |
---|---|---|---|
CNT-1 | 80.72 | 16.14 | 0.32 |
CNT-2 | 113.22 | 15.09 | 0.43 |
CNT-3 | 118.48 | 14.50 | 0.44 |
CNT-4 | 130.80 | 14.07 | 0.51 |
Samples | Content, % | ||
---|---|---|---|
533.2 eV | 531.9 eV | 530.7 eV | |
C–OH C–O–C C–O–OH | C=O O–C=O | O-Physically Absorbed or Carbonates | |
CNT-1 | 0.32 | 1.10 | 0.64 |
CNT-2 | 0.94 | 1.36 | 1.27 |
CNT-3 | 1.17 | 2.40 | 1.44 |
CNT-4 | 1.21 | 3.03 | 1.51 |
Samples | Atomic, % | O/C, % | ||
---|---|---|---|---|
C 1s | O 1s | Si 2p | ||
CNT-1 | 97.61 | 2.06 | 0.33 | 2.11 |
CNT-2 | 96.12 | 3.57 | 0.31 | 3.71 |
CNT-3 | 94.66 | 5.01 | 0.33 | 5.29 |
CNT-4 | 93.84 | 5.75 | 0.41 | 6.13 |
Sample | Mass Loss, % | Total Mass Loss, % | ||
---|---|---|---|---|
150–350 °C | 350–500 °C | 500–900 °C | ||
CNT-1 | 0.08 | 0.18 | 0.86 | 1.22 |
CNT-2 | 1.19 | 0.71 | 2.63 | 5.06 |
CNT-3 | 1.32 | 0.87 | 2.78 | 5.50 |
CNT-4 | 1.41 | 0.75 | 3.16 | 6.22 |
Sample | Position of Peak D and G | ID/IG |
---|---|---|
CNT-1 | (1335, 1570) | 0.847 |
CNT-2 | (1342, 1569) | 0.936 |
CNT-3 | (1339, 1570) | 0.958 |
CNT-4 | (1337, 1569) | 1.050 |
Sample | Average Hydrodynamic Size, nm |
---|---|
CNT-1 | 609.9 |
CNT-2 | 437.2 |
CNT-3 | 402.4 |
CNT-4 | 364.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Wang, J.; Wang, J.; Cui, S. Sulfonitric Treatment of Multiwalled Carbon Nanotubes and Their Dispersibility in Water. Materials 2018, 11, 2442. https://doi.org/10.3390/ma11122442
Liu H, Wang J, Wang J, Cui S. Sulfonitric Treatment of Multiwalled Carbon Nanotubes and Their Dispersibility in Water. Materials. 2018; 11(12):2442. https://doi.org/10.3390/ma11122442
Chicago/Turabian StyleLiu, Hui, Jianfeng Wang, Jiachen Wang, and Suping Cui. 2018. "Sulfonitric Treatment of Multiwalled Carbon Nanotubes and Their Dispersibility in Water" Materials 11, no. 12: 2442. https://doi.org/10.3390/ma11122442