Solar Light Induced Photon-Assisted Synthesis of TiO2 Supported Highly Dispersed Ru Nanoparticle Catalysts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ru/TiO2 Material Preparation
2.2. Characterisations
3. Results and Discussion
3.1. Influence of the Ru Metallic Precursor and of the Targeted Ru Content
3.2. Characterization of the Ru(0.5 wt.%)/TiO2 Catalysts
3.3. Influence of the Precursor Solution pH and Preparation of the Ru(5 wt.%)/TiO2 Catalyst
3.4. Characterization of the Ru(5 wt.%)/TiO2 Catalyst
3.5. Fine Control of the Ru Particle Size Distribution
3.6. Influence of Thermal Reduction
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nigam, P.S.; Singh, A. Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. 2011, 37, 52–68. [Google Scholar] [CrossRef]
- Kobayashi, H.; Komanoya, T.; Guhaa, S.K.; Haraa, K.; Fukuoka, A. Conversion of cellulose into renewable chemicals by supported metal catalysis. Appl. Catal. A Gen. 2011, 410, 13–20. [Google Scholar] [CrossRef]
- Pushkarev, V.V.; Musselwhite, N.; An, K.; Alayoglu, S.; Somorjai, G. High structure sensitivity of vapor-phase furfural decarbonylation/hydrogenation reaction network as a function of size and shape of Pt nanoparticles. Nano Lett. 2012, 12, 5196–5201. [Google Scholar] [CrossRef] [PubMed]
- Auer, E.; Freund, A.; Pietsch, J.; Tacke, T. Carbons as supports for industrial precious metal catalysts. Appl. Catal. A Gen. 1998, 173, 259–271. [Google Scholar] [CrossRef]
- Xu, Z.; Xiao, F.S.; Purnell, S.K.; Alexeev, O.; Kawi, S.; Deutsch, S.E.; Gates, B.C. Size-dependent catalytic activity of supported metal clusters. Nature 1994, 372, 346–348. [Google Scholar] [CrossRef]
- Boudart, M.; Djega-Mariadassou, G. Kinetics of Heterogeneous Catalytic Reactions; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Wenderich, K.; Mul, G. Methods, mechanism, and applications of photodeposition in photocatalysis: A review. Chem. Rev. 2016, 116, 14587–14619. [Google Scholar] [CrossRef] [PubMed]
- Pinna, F. Supported metal catalysts preparation. Catal. Today 1998, 41, 129–137. [Google Scholar] [CrossRef]
- Crisafulli, C.; Scirè, S.; Giuffrida, S.; Ventimiglia, G.; Lo Nigro, R. An investigation on the use of liquid phase photo-deposition for the preparation of supported Pt catalysts. Appl. Catal. A Gen. 2006, 306, 51–57. [Google Scholar] [CrossRef]
- Tanaka, A.; Sakaguchi, S.; Hashimoto, K.; Kominami, H. Preparation of Au/TiO2 exhibiting strong surface plasmon resonance effective for photoinduced hydrogen formation from organic and inorganic compounds under irradiation of visible light. Catal. Sci. Technol. 2012, 2, 907–909. [Google Scholar] [CrossRef]
- Tanaka, A.; Sakaguchi, S.; Hashimoto, K.; Kominami, H. Photocatalytic reactions under irradiation of visible light over gold nanoparticles supported on titanium(IV) oxide powder prepared by using a multi-step photodeposition method. Catal. Sci. Technol. 2014, 4, 1931–1938. [Google Scholar] [CrossRef]
- Camposeco, R.; Castillo, S.; Mejia-Centeno, I.; Navarrete, J.; Marin, J. Characterization of physicochemical properties of Pd/TiO2 nanostructured catalysts prepared by the photodeposition method. Mater. Charact. 2014, 95, 201–210. [Google Scholar] [CrossRef]
- Dobosz, A.; Sobczyński, A. The influence of silver additives on titania photoactivity in the photooxidation of phenol. Water Res. 2003, 37, 1489–1496. [Google Scholar] [CrossRef]
- Parastar, S.; Nasseri, S.; Borji, S.H.; Fazlzadeh, M.; Mahvi, A.H.; Javadi, A.H.; Gholami, M. Application of Ag-doped TiO2 nanoparticle prepared by photodeposition method for nitrate photocatalytic removal from aqueous solutions. Desalin. Water Treat. 2013, 51, 7137–7144. [Google Scholar] [CrossRef]
- Maicu, M.; Hidalgo, M.C.; Colón, G.; Navío, J.A. Comparative study of the photodeposition of Pt, Au and Pd on pre-sulphated TiO2 for the photocatalytic decomposition of phenol. J. Photochem. Photobiol. A Chem. 2011, 217, 275–283. [Google Scholar] [CrossRef]
- Maeda, K.; Lu, D.; Teramura, K.; Domen, K. Simultaneous photodeposition of rhodium–chromium nanoparticles on a semiconductor powder: Structural characterization and application to photocatalytic overall water splitting. Energy Environ. Sci. 2010, 3, 470–477. [Google Scholar] [CrossRef]
- Lennox, A.J.J.; Bartels, P.; Pohl, M.M.; Junge, H.; Beller, M. In situ photodeposition of copper nanoparticles on TiO2: Novel catalysts with facile light-induced redox cycling. J. Catal. 2016, 340, 177–183. [Google Scholar] [CrossRef]
- Wu, G.; Guan, N.; Li, L. Low temperature CO oxidation on Cu–Cu2O/TiO2 catalyst prepared by photodeposition. Catal. Sci. Technol. 2011, 1, 601–608. [Google Scholar] [CrossRef]
- Han, Y.; Zhou, J.; Wang, W.; Wan, H.; Xu, Z.; Zheng, S.; Zhu, D. Enhanced selective hydrodechlorination of 1,2-dichloroethane to ethylene on Pt–Ag/TiO2 catalysts prepared by sequential photodeposition. Appl. Catal. B Environ. 2012, 125, 172–179. [Google Scholar] [CrossRef]
- Ruppert, A.M.; Weinberg, K.; Palkovits, R. Hydrogenolysis goes bio: From carbohydrates and sugar alcohols to platform chemicals. Angew. Chem. Int. Ed. 2012, 51, 2564–2601. [Google Scholar] [CrossRef] [PubMed]
- Li, T.L.; Cai, C.D.; Yeh, T.F.; Teng, H. Capped CuInS2 quantum dots for H2 evolution from water under visible light illumination. J. Alloys Compd. 2013, 550, 326–330. [Google Scholar] [CrossRef]
- Grabowska, E.; Diak, M.; Klimczuk, T.; Lisowski, W.; Zaleska-Medynska, A. Novel decahedral TiO2 photocatalysts modified with Ru or Rh NPs: Insight into the mechanism. J. Mol. Catal. 2017, 434, 154–166. [Google Scholar] [CrossRef]
- Rufus, I.B.; Ramakrishnan, V.; Viswanathan, B.; Kuriacose, J.C. Interface and surface analysis of Ru/CdS. J. Mater. Sci. Lett. 1996, 15, 1921–1923. [Google Scholar] [CrossRef]
- Sobczynski, A.; Jakubowska, T.; Zielinski, S. Hydrogen Photoevolution from Water-Methanol on Ru/TiO2. Chem. Mon. 1989, 120, 101–109. [Google Scholar] [CrossRef]
- Doniach, S.; Sunjic, M. Many-electron singularity in X-ray photoemission and X-ray line spectra from metals. J. Phys. C Solid State Phys. 1970, 3, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Shirley, D.A. High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold. Phys. Rev. B 1972, 5, 4709–4714. [Google Scholar] [CrossRef] [Green Version]
- Wagner, C.D.; Davis, L.E.; Zeller, M.V.; Taylor, J.A.; Raymond, R.M.; Gale, L.H. Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf. Interface Anal. 1981, 3, 211–225. [Google Scholar] [CrossRef]
- Ruppert, A.M.; Jędrzejczyk, M.; Sneka-Płatek, O.; Keller, N.; Dumon, A.S.; Michel, C.; Sautet, P.; Grams, J. Ru catalysts for levulinic acid hydrogenation with formic acid as a hydrogen source. Green Chem. 2016, 18, 2014–2028. [Google Scholar] [CrossRef]
- Coşkuner Filiz, B.; Gnanakumar, E.S.; Martínez-Arias, A.; Gengler, R.; Rudolf, P.; Rothenberg, G.; Shiju, N.R. Highly selective hydrogenation of levulinic acid to γ-Valerolactone over Ru/ZrO2 catalysts. Catal. Lett. 2017, 147, 1744–1753. [Google Scholar] [CrossRef]
- Cabrera, N.F.M.N.; Mott, N.F. Theory of the oxidation of metals. Rep. Progr. Phys. 1949, 12, 163. [Google Scholar] [CrossRef]
- Wojciechowska, J.; Gitzhofer, E.; Grams, J.; Ruppert, A.M.; Keller, N. Light-driven synthesis of sub-nanometric metallic Ru catalysts on TiO2. Catal. Today 2018. [Google Scholar] [CrossRef]
- Rard, J.A. Chemistry and Thermodynamics of Ruthenium and Some of Its Inorganic Compounds and Aqueous Species. Chem. Rev. 1985, 85, 1–39. [Google Scholar] [CrossRef]
- Connick, R.E. Advances in the Chemistry of the Coordination Compounds; Kirschner, S., Ed.; MacMillan: New York, NY, USA, 1961. [Google Scholar]
- Viljoen, K. Ruthenium(III) Aqua-Chloro Complex Chemistry: The Interconversion of the Hexachlororuthenate(III) and Aquapentachlororuthenate(III) Species. Master Thesis, University of Stellenbosch, Stellenbosch, South Africa, 2003. [Google Scholar]
- Naya, S.I.; Tanaka, M.; Kimura, K.; Tada, H. Visible-light-driven copper acetylacetonate decomposition by BiVO4. Langmuir 2011, 27, 10334–10339. [Google Scholar] [CrossRef] [PubMed]
- Ruppert, A.M.; Grams, J.; Jędrzejczyk, M.; Matras-Michalska, J.; Keller, N.; Ostojska, K.; Sautet, P. Titania-supported catalysts for levulinic acid hydrogenation: Influence of support and its impact on γ-valerolactone yield. ChemSusChem 2015, 8, 1538–1547. [Google Scholar] [CrossRef] [PubMed]
- Cady, H.H.; Connick, R.E. The determination of the formulas of aqueous Ruthenium (III) species by means of ion-exchange resin: Ru+3, RuCl+2 and RuC12+. J. Am. Chem. Soc. 1958, 80, 2646–2652. [Google Scholar] [CrossRef]
- Wachala, M.; Grams, J.; Kwapinski, W.; Ruppert, A.M. Influence of ZrO2 on catalytic performance of Ru catalyst in hydrolytic hydrogenation of cellulose towards γ-valerolactone. Int. J. Hydrog. Energy 2016, 41, 8688–8695. [Google Scholar] [CrossRef]
- Wojciechowska, J.; Jedrzejczyk, M.; Grams, J.; Keller, N.; Ruppert, A.M. Enhanced production of γ-valerolactone with internal source of hydrogen on Ca-modified TiO2 supported Ru catalysts. ChemSusChem 2018. [Google Scholar] [CrossRef] [PubMed]
Ruthenium Precursor, pH | Targeted Ru Content, wt.% | Ru Content, wt.% a |
---|---|---|
acetylacetonate | 0.5 | 0.45 |
chloride, 4.4 | 0.5 | 0.46 |
chloride, 6.4 | 1 | 0.92 |
chloride, 8.0 | 5 | 4.9 |
chloride, 6.4 | 5 | 4.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojciechowska, J.; Gitzhofer, E.; Grams, J.; Ruppert, A.M.; Keller, N. Solar Light Induced Photon-Assisted Synthesis of TiO2 Supported Highly Dispersed Ru Nanoparticle Catalysts. Materials 2018, 11, 2329. https://doi.org/10.3390/ma11112329
Wojciechowska J, Gitzhofer E, Grams J, Ruppert AM, Keller N. Solar Light Induced Photon-Assisted Synthesis of TiO2 Supported Highly Dispersed Ru Nanoparticle Catalysts. Materials. 2018; 11(11):2329. https://doi.org/10.3390/ma11112329
Chicago/Turabian StyleWojciechowska, Joanna, Elisa Gitzhofer, Jacek Grams, Agnieszka M. Ruppert, and Nicolas Keller. 2018. "Solar Light Induced Photon-Assisted Synthesis of TiO2 Supported Highly Dispersed Ru Nanoparticle Catalysts" Materials 11, no. 11: 2329. https://doi.org/10.3390/ma11112329
APA StyleWojciechowska, J., Gitzhofer, E., Grams, J., Ruppert, A. M., & Keller, N. (2018). Solar Light Induced Photon-Assisted Synthesis of TiO2 Supported Highly Dispersed Ru Nanoparticle Catalysts. Materials, 11(11), 2329. https://doi.org/10.3390/ma11112329