Dielectric, Ferroelectric, and Magnetic Properties of Sm-Doped BiFeO3 Ceramics Prepared by a Modified Solid-State-Reaction Method
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Optimization of Sintering and Annealing Temperatures
3.2. Microstructure and Phase Purity
3.3. Ferroelectric and Magnetic Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, J.; Fan, Z.; Xiao, D.; Zhu, J.; Wang, J. Multiferroic bismuth ferrite-based materials for multifunctional applications: Ceramic bulks, thin films and nanostructures. Prog. Mater. Sci. 2016, 84, 335–402. [Google Scholar] [CrossRef]
- Wang, J.B.N.J.; Neaton, J.B.; Zheng, H.; Nagarajan, V.; Ogale, S.B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D.G.; Waghmare, U.V.; et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 2003, 299, 1719–1722. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Kan, D.; Takeuchi, I.; Nagarajan, V.; Seidel, J. Doping BiFeO3: Approaches and Enhanced Functionality. Phys. Chem. Chem. Phys. 2012, 14, 15953–15962. [Google Scholar] [CrossRef] [PubMed]
- Rojac, T.; Bencan, A.; Malic, B.; Tutuncu, G.; Jones, J.L.; Daniels, J.E.; Damjanovic, D. BiFeO3 ceramics: Processing, Electrical, and Electromechanical Properties. J. Am. Ceram. Soc. 2014, 97, 1993–2011. [Google Scholar] [CrossRef]
- Morozov, M.I.; Lomanova, N.A.; Gusarov, V.V. Specific features of BiFeO3 formation in a mixture of Bismuth(III) and Iron(III) oxides. Russ. J. Gen. Chem. 2003, 73, 1676–1680. [Google Scholar] [CrossRef]
- Yuan, G.L.; Or, S.W.; Wang, Y.P.; Liu, Z.G.; Liu, J.M. Preparation and multi-properties of insulated single-phase BiFeO3 ceramics. Solid State Commun. 2006, 138, 76–81. [Google Scholar] [CrossRef]
- Walker, J.; Bryant, P.; Kurusingal, V.; Sorrell, C.; Kuscer, D.; Drazic, G.; Bencan, A.; Nagarajan, V.; Rojac, T. Synthesis-phase-composition relationship and high electric-field-induced electrochemical behavior of samarium-modified BiFeO3 ceramics. Acta Mater. 2015, 83, 149–159. [Google Scholar] [CrossRef]
- Verma, V. Structural, electrical and magnetic properties of rare-earth and transition element co-doped bismuth ferrites. J. Alloys Compd. 2015, 641, 205–209. [Google Scholar] [CrossRef]
- Tao, H.; Lv, J.; Zhang, R.; Xiang, R.; Wu, J. Lead-free rare earth-modified BiFeO3 ceramics: Phase structure and electrical properties. Mater. Des. 2017, 120, 83–89. [Google Scholar] [CrossRef]
- Yuan, G.L.; Or, S.W.; Liu, J.M.; Liu, Z.G. Structural transformation and ferroelectromagnetic behavior in single-phase Bi1-xNdxFeO3 multiferroic ceramics. Appl. Phys. Lett. 2006, 89, 052905. [Google Scholar] [CrossRef]
- Nalwa, K.S.; Garg, A. Phase evolution, magnetic and electrical properties in Sm-doped bismuth ferrite. J. Appl. Phys. 2008, 103, 044101. [Google Scholar] [CrossRef]
- Uniyal, P.; Yadav, K.L. Study of dielectric, magnetic and ferroelectric properties in Bi1−xGdxFeO3. Mater. Lett. 2008, 62, 2858–2861. [Google Scholar] [CrossRef]
- Palkar, V.R.; Darshan, C.K.; Malik, S.K.; Bhattacharya, S. Magnetoelectricity at room temperature in the Bi0.9−xTbxLa0.1FeO3 system. Phys. Rev. B 2004, 69, 212102. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Y.; Lu, M.; Du, C.; Chen, Y.; Liu, Z.; Zhu, Y.; Ming, N. Substitution-induced phase transition and enhanced multiferroic properties of Bi1-xLaxFeO3 ceramics. Appl. Phys. Lett. 2006, 88, 162901. [Google Scholar] [CrossRef]
- Khomchenko, V.A.; Kiselev, D.A.; Selezneva, E.K.; Vieira, J.M.; Lopes, A.M.; Pogorelov, Y.G.; Araujo, J.P.; Kholkin, A.L. Weak ferromagnetism in diamagnetically-doped Bi1−xAxFeO3 (A = Ca, Sr, Pb, Ba) multiferroics. Mater. Lett. 2008, 62, 1927–1929. [Google Scholar] [CrossRef]
- Chandel, S.; Thakur, P.; Thakur, S.S.; Kanwar, V.; Tomar, M.; Gupta, V.; Thakur, A. Effect of non-magnetic Al3+ doping on structural, optical, electrical, dielectric and magnetic properties of BiFeO3 ceramics. Ceram. Intl. 2018, 44, 4711–4718. [Google Scholar] [CrossRef]
- Kumar, P.; Chand, P. Structural, electric transport response and electro-strain-polarization effect in La and Ni modified bismuth ferrite nanostructures. J. Alloys Compd. 2018, 748, 504–514. [Google Scholar] [CrossRef]
- Lam, S.; Jaffari, Z.H.; Sin, J. Hydrothermal synthesis of coral-like palladium-doped BiFeO3 nanocomposites with enhanced photocatalytic and magnetic properties. Mater. Lett. 2018, 224, 1–4. [Google Scholar] [CrossRef]
- Singh, V.; Sharma, S.; Dwivedi, R.K. Improved dielectric, magnetic and optical properties of Pr and Ti co-substituted BFO ceramics. J. Alloys Compd. 2018, 747, 611–620. [Google Scholar] [CrossRef]
- Anthoniappen, J.; Chang, W.S.; Soh, A.K.; Tu, C.; Vashan, P.; Lim, F.S. Electric field induced nanoscale polarization switching and piezoresponse in Sm and Mn co-doped BiFeO3 multiferroic ceramics by using piezoresponse force microscopy. Acta Mater. 2017, 132, 174–181. [Google Scholar] [CrossRef]
- Chai, Z.; Tan, G.; Yue, Z.; Yang, W.; Guo, M.; Ren, H.; Xia, A.; Xue, M.; Liu, Y.; Lv, L.; et al. Ferroelectric properties of BiFeO3 thin films by Sr/Ga/Mn/Co multi-doping. J. Alloys Compd. 2018, 746, 677–687. [Google Scholar] [CrossRef]
- Zhu, J.; Dai, J.; Xu, J.; Li, X. Effects of Zn and Ti co-doping on structure and electrical properties of BiFeO3 ceramics. Ceram. Intl. 2018, 44, 9215–9220. [Google Scholar] [CrossRef]
- Kumar, M.; Yadav, K.L. Rapid liquid phase sintered Mn doped BiFeO3 ceramics with enhanced polarization and weak magnetization. Appl. Phys. Lett. 2007, 91, 242901. [Google Scholar] [CrossRef]
- Kalantari, K.; Sterianou, I.; Karimi, S.; Ferrarelli, M.C.; Miao, S.; Sinclair, D.C.; Reaney, I.M. Ti-doping to reduce conductivity in Bi0.85Nd0.15FeO3 ceramics. Adv. Funct. Mater. 2011, 21, 3737–3743. [Google Scholar] [CrossRef]
- Kan, D.; Pálová, L.; Anbusathaiah, V.; Cheng, C.J.; Fujino, S.; Nagarajan, V.; Rabe, K.M.; Takeuchi, I. Universal behavior and electric-field-induced structural transition in rare-earth-substituted BiFeO3. Adv. Funct. Mater. 2010, 20, 1108–1115. [Google Scholar] [CrossRef]
- Karimi, S.; Reaney, I.M.; Han, Y.; Pokorny, J.; Sterianou, I. Crystal chemistry and domain structure of rare-earth doped BiFeO3 ceramics. J. Mater. Sci. 2009, 44, 5102–5112. [Google Scholar] [CrossRef]
- Arnold, D.C. Composition-driven structural phase transitions in rare-earth-doped BiFeO3 ceramics: A review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 62–82. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.; Simons, H.; Alikin, D.O.; Turygin, A.P.; Shur, V.Y.; Kholkin, A.L.; Ursic, H.; Becan, A.; Malic, B.; Nagarajan, V.; et al. Dual strain mechanisms in a lead-free morphotropic phase boundary ferroelectric. Sci. Rep. 2016, 6, 19630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, C.; Viola, G.; Zhang, D.; Zhou, K.; Koval, V.; Mahajan, A.; Wilson, R.M.; Tarakina, N.V.; Abrahams, I.; Yan, H. Phase evolution and electrical behavior of samarium-substituted bismuth ferrite ceramics. J. Eur. Ceram. Soc. 2018, 38, 1374–1380. [Google Scholar] [CrossRef]
- Kim, J.S.; Cheon, C., II; Kang, H.; Jang, P.W. High temperature properties of multiferroic BiFeO3–DyFeO3–BaTiO3 solid solutions. J. Eur. Ceram. Soc. 2007, 27, 3951–3954. [Google Scholar] [CrossRef]
- Rojac, T.; Kosec, M.; Budic, B.; Setter, N.; Damjanovic, D. Strong ferroelectric domain-wall pinning in BiFeO3 ceramics. J. Appl. Phys. 2010, 108, 074107. [Google Scholar] [CrossRef]
- Selbach, S.M.; Einarsrud, M.A.; Grande, T. On the thermodynamic stability of BiFeO3. Chem. Mater. 2009, 21, 169–173. [Google Scholar] [CrossRef]
- Singh, M.K.; Ryu, S.; Jang, H.M. Polarized Raman scattering of multiferroic BiFeO3 thin films with pseudo-tetragonal symmetry. Phys. Rev. B 2005, 72, 132101. [Google Scholar] [CrossRef]
- Wenk, H.R.; Lutterotti, L.; Vogel, S.C. Rietveld texture analysis from TOF neutron diffraction data. Powder Diffr. 2010, 25, 283–296. [Google Scholar] [CrossRef]
- Yuan, G.L.; Or, S.W.; Chan, H.L.W. Raman scattering spectra and ferroelectric properties of Bi1−xNdxFeO3 (x = 0–0.2) multiferroic ceramics. J. Appl. Phys. 2007, 101, 064101. [Google Scholar] [CrossRef]
- Lin, D.; Kwok, K.W.; Chan, H.L.W. Double hysteresis loop in Cu-doped K0.5Na0.5NbO3 lead-free piezoelectric ceramics. Appl. Phys. Lett. 2007, 90, 232903. [Google Scholar] [CrossRef]
- Sosnowska, I.; Loewenhaupt, M.; David, W.I.F.; Ibberson, R.M. Investigation of the unusual magnetic spiral arrangement in BiFeO3. Physica B 1992, 180–181, 117–118. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Zeng, X.; Bi, D.; Guo, K.; Yao, Y.; Lu, S. Dielectric, Ferroelectric, and Magnetic Properties of Sm-Doped BiFeO3 Ceramics Prepared by a Modified Solid-State-Reaction Method. Materials 2018, 11, 2208. https://doi.org/10.3390/ma11112208
Zhang F, Zeng X, Bi D, Guo K, Yao Y, Lu S. Dielectric, Ferroelectric, and Magnetic Properties of Sm-Doped BiFeO3 Ceramics Prepared by a Modified Solid-State-Reaction Method. Materials. 2018; 11(11):2208. https://doi.org/10.3390/ma11112208
Chicago/Turabian StyleZhang, Fuzeng, Xiangjun Zeng, Daoguang Bi, Kailong Guo, Yingbang Yao, and Shengguo Lu. 2018. "Dielectric, Ferroelectric, and Magnetic Properties of Sm-Doped BiFeO3 Ceramics Prepared by a Modified Solid-State-Reaction Method" Materials 11, no. 11: 2208. https://doi.org/10.3390/ma11112208