The Diffusion of Low-Energy Methyl Group on ITO Film Surface and Its Impact on Optical-Electrical Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Crystallographic Texture Analysis
3.2. Optical-Electrical Property Analysis
3.3. XPS Analysis
3.4. Diffusion Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050. [Google Scholar] [CrossRef] [PubMed]
- Burschka, J.; Pellet, N.; Moon, S.J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J.C.; Neukirch, A.J.; Gupta, G.; Crochet, J.J.; Chhowalla, M.; Tretiak, S.; Alam, M.A.; et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347, 522–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dymshits, A.; Iagher, L.; Etgar, L. Parameters Influencing the Growth of ZnO Nanowires as Efficient Low Temperature Flexible Perovskite-Based Solar Cells. Materials 2016, 9, 60. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Johnston, M.B.; Snaith, H.J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Green, M.A.; Ho-Baillie, A.; Snaith, H.J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514. [Google Scholar] [CrossRef]
- Lee, M.M.; Teuscher, J.; Miyasaka, T.; Murakami, T.N.; Snaith, H.J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647. [Google Scholar] [CrossRef] [PubMed]
- Xing, G.C.; Mathews, N.; Sun, S.Y.; Lim, S.S.; Lam, Y.M.; Gratzel, M.; Mhaisalkar, S.; Sum, T.C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PBI3. Science 2013, 342, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.S.; Noh, J.H.; Jeon, N.J.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237. [Google Scholar] [CrossRef] [PubMed]
- Jeon, N.J.; Noh, J.H.; Kim, Y.C.; Yang, W.S.; Ryu, S.; Seok, S.I. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Jeon, N.J.; Noh, J.H.; Yang, W.S.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.H.; Im, S.H.; Noh, J.H.; Mandal, T.N.; Lim, C.S.; Chang, J.A.; Lee, Y.H.; Kim, H.; Sarkar, A.; Nazeeruddin, M.K.; et al. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 2013, 7, 486–491. [Google Scholar] [CrossRef]
- Liu, D.; Kelly, T.L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 2014, 8, 133–138. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.; Duan, H.S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546. [Google Scholar] [CrossRef] [PubMed]
- Gwamuri, J.; Marikkannan, M.; Mayandi, J.; Bowen, P.K.; Pearce, J.M. Influence of oxygen concentration on the performance of ultra-thin RF magnetron sputter deposited indium tin oxide films as a top electrode for photovoltaic devices. Materials 2016, 9, 63. [Google Scholar] [CrossRef] [PubMed]
- Dunkel, C.; von Graberg, T.; Smarsly, B.M.; Oekermann, T.; Wark, M. Limits of ZnO electrodeposition in mesoporous tin doped indium oxide films in view of application in dye-sensitized solar cells. Materials 2014, 7, 3291–3304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.; Xie, D. Initial decomposition of methanol and water on In2O3 (110): A periodic DFT study. Chin. J. Chem. 2012, 30, 2036. [Google Scholar] [CrossRef]
- Ding, W.; Ju, D.; Chai, W. The effect of working pressure on the chemical bond structure and hydrophobic property of PET surface treated by N ion beams bombardment. Appl. Surf. Sci. 2010, 256, 6876–6880. [Google Scholar] [CrossRef]
- Ding, W.; Li, L.; Zhang, L.; Ju, D.; Peng, S.; Chai, W. An XPS study on the chemical bond structure at the interface between SiOxNy and N doped PET. J. Chem. Phys. 2013, 138, 104706. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.J.; Kondo, H.; Ishikawa, K.; Sekine, M.; Hiramatsu, M.; Hori, M. Density control of carbon nanowalls grown by CH4/H2 plasma and their electrical property. Carbon 2014, 68, 380–388. [Google Scholar] [CrossRef]
- Hannemann, M.; Hamann, S.; Burlacov, I.; Börner, K.; Spies, H.J.; Röpcke, J. Langmuir probe and optical diagnostics of active screen N2-H2 plasma nitriding processes with admixture of CH4. Surf. Coat. Technol.. 2013, 235, 561–569. [Google Scholar] [CrossRef]
- Sankaran, K.J.; Kurian, J.; Chen, H.C.; Dong, C.L.; Lee, C.Y.; Tai, N.H.; Lin, I.N. Origin of a needle-like granular structure for ultrananocrystalline diamond films grown in a N2/CH4 plasma. J. Phys. D Appl. Phys. 2012, 45, 365303. [Google Scholar] [CrossRef]
- Ndiaye, A.A.; Lago, V. Optical spectroscopy investigation of N2-CH4 plasma jets simulating Titan atmospheric entry conditions, Plasma Sources Sci. Technol. 2011, 20, 015015. [Google Scholar]
- Tahar, R.B.H.; Ban, T.; Ohya, Y.; Takahashi, Y. Tin doped indium oxide thin films: Electrical property. J. Appl. Phys. 1998, 83, 2631. [Google Scholar] [CrossRef]
- Kim, H.; Gilmore, C.M.; Pique, A.; Horwitz, J.S.; Mattoussi, H.; Murata, H.; Kafafi, Z.H.; Chrisey, D.B. Electrical, optical, and structural property of indium-tin-oxide thin films for organic light-emitting devices. J. Appl. Phys. 1999, 86, 6451. [Google Scholar] [CrossRef]
- Facchetti, A.; Marks, T.J. Transparent Electronics: From Synthesis to Applications; John Wiley & Sons Ltd.: Chichester, UK, 2010; pp. 1–59. ISBN 9780470710609. [Google Scholar]
- Wang, H. Preparation of High-Quality Indium Tin Oxide Film Used for Organic Light-Emitting Display. Ph.D. Thesis, Dalian Jiaotong University, Dalian, China, 14 January 2014. (In Chinese). [Google Scholar]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-Ray Photoelectron Spectroscopy; Physical Electronics Inc.: Eden Prairie, MN, USA, 1995; pp. 29–198. ISBN 9780964812413. [Google Scholar]
- Beamson, G.; Briggs, D. High Resolution XPS of Organic Polymers: the Scienta ESCA3000 Database; Wiley: New York, NY, USA, 1992; pp. 53–277. ISBN 0471935921. [Google Scholar]
- Oyama, S.T. The Chemistry of Transition Metal Carbides and Nitrides; Chapman & Hall: London, UK, 1996; pp. 91–107. ISBN 0751403652. [Google Scholar]
- Gusev, A.I.; Rempel, A.A.; Magerl, A.J. Disorder and Order in Strongly Nonstoichiometric Compounds Transition Metal Carbides, Nitrides and Oxides; Springer: Heidelberg, Germany, 2001; pp. 43–102. ISBN 9783642075247. [Google Scholar]
- Wu, Z.; Wang, B.; Sun, X. The Film Growth, 2nd ed.; Science Press: Beijing, China, 2017; pp. 105–124, (In Chinese). ISBN 9787030367310. [Google Scholar]
- Cao, Z. Thin Film Growth: Physics, Materials Science and Applications; Woodhead Publishing Ltd.: New Delhi, New India, 2011; pp. 121–151. ISBN 9781845699345. [Google Scholar]
- Lee, H.C.; Park, O.O. Electron scattering mechanisms in indium-tin-oxide thin films: grain boundaryand ionized impurity scattering. Vacuum 2004, 75, 275–282. [Google Scholar] [CrossRef]
- Mei, F.; Yuan, T.; Li, R.; Qin, K.; Huang, J. Microstructure evolution and grain orientation in ITO targets and their effects on the film characteristics. J. Mater. Sci. Mater. Electron. 2018, 29, 14620–14634. [Google Scholar] [CrossRef]
- Sadofev, S.; Cho, Y.J.; Brandt, O.; Ramsteiner, M.; Calarco, R.; Riechert, H.; Erwin, S.C.; Galazka, Z.; Korytov, M.; Albrecht, M.; et al. Growth of wurtzite InN on bulk In2O3(111) wafers. Appl. Phys. Lett. 2012, 101, 172102. [Google Scholar] [CrossRef]
- Hagleitner, D.R.; Menhart, M.; Jacobson, P.; Blomberg, S.; Schulte, K.; Lundgren, E.; Kubicek, M.; Fleig, J.; Kubel, F.; Puls, C.; et al. Bulk and surface characterization of In2O3 (001) single crystals. Phys. Rev. B 2012, 85, 115441. [Google Scholar] [CrossRef]
- Zhang, K.H.L.; Walsh, A.; Catlow, C.R.A.; Lazarov, V.K.; Egdell, R.G. Surface energies control the self-organization of oriented In2O3 nanostructures on cubic zirconia. Nano Lett. 2010, 10, 3740–3746. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Lv, Z.; Guo, X.; Liu, C.; Wang, H.; Jiang, W.; Liu, S.; Wang, N.; Cui, Y.; Ding, W.; et al. The Diffusion of Low-Energy Methyl Group on ITO Film Surface and Its Impact on Optical-Electrical Properties. Materials 2018, 11, 1991. https://doi.org/10.3390/ma11101991
Zhao S, Lv Z, Guo X, Liu C, Wang H, Jiang W, Liu S, Wang N, Cui Y, Ding W, et al. The Diffusion of Low-Energy Methyl Group on ITO Film Surface and Its Impact on Optical-Electrical Properties. Materials. 2018; 11(10):1991. https://doi.org/10.3390/ma11101991
Chicago/Turabian StyleZhao, Shiping, Zhixuan Lv, Xuelin Guo, Chaoqian Liu, Hualin Wang, Weiwei Jiang, Shimin Liu, Nan Wang, Yunxian Cui, Wanyu Ding, and et al. 2018. "The Diffusion of Low-Energy Methyl Group on ITO Film Surface and Its Impact on Optical-Electrical Properties" Materials 11, no. 10: 1991. https://doi.org/10.3390/ma11101991
APA StyleZhao, S., Lv, Z., Guo, X., Liu, C., Wang, H., Jiang, W., Liu, S., Wang, N., Cui, Y., Ding, W., Han, B., & Ju, D. (2018). The Diffusion of Low-Energy Methyl Group on ITO Film Surface and Its Impact on Optical-Electrical Properties. Materials, 11(10), 1991. https://doi.org/10.3390/ma11101991