Corrosion Behavior of the As-Cast and As-Solid Solution Mg-Al-Ge Alloy
Abstract
:1. Introduction
2. Experiment
2.1. Material Preparation
2.2. Microstructure Characterization
2.3. Electrochemical Measurements
2.4. Immersion and Weight-Loss Measurements
3. Results
3.1. Microstructure of Mg-3Al-xGe Alloy
3.2. Electrochemical Test
3.3. Immersion and Mass-Loss Test
4. Discussion
4.1. Effect of Ge Content on Corrosion Behavior of Mg-3Al-xGe Alloys
4.2. Effect of Solid Solution Treatment on Corrosion Behavior of Mg-3Al-xGe Alloys
5. Conclusions
Author Contributions
Funding
Conflicts of interest
References
- Ghali, E. Magnesium and magnesium alloys. In Uhlig’s Corrosion Handbook; Revie, R.W., Ed.; John Wiley & Sons: New York, NY, USA, 2000; 793p. [Google Scholar]
- Cui, L.Y.; Liu, Z.Y.; Hu, P.; Shao, J.M.; Li, X.G.; Du, C.W.; Jiang, B. The Corrosion Behavior of AZ91D Magnesium Alloy in Simulated Haze Aqueous Solution. Materials 2018, 11, 970. [Google Scholar] [CrossRef] [PubMed]
- Ballerini, G.; Bardi, U.; Bignucolo, R.; Ceraolo, G. About some corrosion mechanisms of AZ91D magnesium alloy. Corros. Sci. 2005, 47, 2173–2184. [Google Scholar] [CrossRef]
- Li, T.; He, Y.; Zhou, J.X.; Tang, S.Q.; Wang, X.T. Effects of scandium addition on biocompatibility of biodegradable Mg-1.5Zn-0.6Zr alloy. Mater. Lett. 2018, 215, 200–202. [Google Scholar] [CrossRef]
- Wang, J.F.; Jiang, W.Y.; Guo, S.F.; Li, Y.; Ma, Y. The Effect of Rod-Shaped Long-Period Stacking Ordered Phases Evolution on Corrosion Behavior of Mg95.33Zn2Y2.67 Alloy. Materials 2018, 11, 815. [Google Scholar] [CrossRef] [PubMed]
- Bakhsheshi-Rad, H.R.; Hamzah, E.; Daroonparvar, M.; Kasiri-Asgarani, M.; Medraj, M. Synthesis and biodegradation evaluation of nano-Si and nano-Si/TiO2 coatings on biodegradable Mg-Ca alloy in simulated body fluid. Ceram. Int. 2014, 40, 14009–14018. [Google Scholar] [CrossRef]
- Huang, W.; Xu, B.; Yang, W.Z.; Zhang, K.G.; Chen, Y.; Yin, X.S.; Liu, Y.; Ni, Z.Y.; Pei, F. Corrosion behavior and biocompatibility of hydroxyapatite/magnesium phosphate/zinc phosphate composite coating deposited on AZ31 alloy. Surf. Coat. Technol. 2017, 326, 270–280. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.Y.; Lai, H.Y.; Xu, Y.Z. Effect of Homogenization on Microstructure Characteristics, Corrosionand Biocompatibility of Mg-Zn-Mn-xCa Alloys. Materials 2018, 11, 227. [Google Scholar] [CrossRef] [PubMed]
- Li, J.R.; Wan, K.; Jiang, Q.T.; Sun, H.Y.; Li, Y.T.; Hou, B.R.; Zhu, L.W.; Liu, M. Corrosion and Discharge Behaviors of Mg-Al-Zn and Mg-Al-Zn-In Alloys as Anode Materials. Metals 2016, 6, 65. [Google Scholar] [CrossRef]
- Schloffer, D.; Bozorgi, S.; Sherstnev, P.; Lenardt, C.; Gollas, B. Manufacturing and characterization of magnesium alloy foils for use as anode materials in rechargeable magnesium ion batteries. J. Power Sources 2017, 367, 138–144. [Google Scholar] [CrossRef]
- Zheng, T.X.; Hu, Y.B.; Zhang, Y.X.; Yang, S.W.; Pan, F.S. Composition optimization and electrochemical properties of Mg-Al-Sn-Mn alloy anode for Mg-air batteries. Mater. Des. 2018, 137, 245–255. [Google Scholar] [CrossRef]
- Yang, J.; Peng, J.; Nyberg, E.A.; Pan, F.S. Effect of Ca addition on the corrosion behavior of Mg-Al-Mn alloy. Appl. Surf. Sci. 2016, 369, 92–100. [Google Scholar] [CrossRef]
- Liao, J.S.; Hotta, M. Corrosion products of field-exposed Mg-Al series magnesium alloys. Corros. Sci. 2016, 112, 276–288. [Google Scholar] [CrossRef]
- Cao, F.Y.; Song, G.L.; Atrens, A. Corrosion and passivation of magnesium alloys. Corros. Sci. 2016, 111, 835–845. [Google Scholar] [CrossRef]
- Liu, Q.; Ma, Q.X.; Chen, G.Q.; Cao, X.; Zhang, S.; Pan, J.L.; Zhang, G.; Shi, Q.Y. Enhanced corrosion resistance of AZ91 magnesium alloy through refinement and homogenization of surface microstructure by friction stir processing. Corros. Sci. 2018, 138, 284–296. [Google Scholar] [CrossRef]
- Song, Y.W.; Shan, D.Y.; Han, E.H. Pitting corrosion of a Rare Earth Mg alloy GW93. J. Mater. Sci. Technol. 2017, 99, 954–960. [Google Scholar] [CrossRef]
- Feng, H.; Liu, S.H.; Lei, Y.; Du, T.; Zeng, R.C.; Yuan, T.C. Effect of the second phases on corrosion behavior of the Mg-Al-Zn alloys. J. Alloys Compd. 2017, 695, 2330–2338. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, Y.G.; Zhang, W.; Zhang, T.; Wang, F.H. Influence of second phase on corrosion performance and formation mechanism of PEO coating on AZ91 Mg alloy. J. Alloys Compd. 2017, 718, 92–103. [Google Scholar] [CrossRef]
- Song, Y.W.; Han, E.H.; Shan, D.Y.; Chang, D.Y.; You, B.S. The role of second phases in the corrosion behavior of Mg-Zn alloy. Corros. Sci. 2012, 60, 238–245. [Google Scholar] [CrossRef]
- Wang, M.; Xiao, D.H.; Liu, W.S. Effect of Si addition on microstructure and properties of magnesium alloys with high Al and Zn contents. Vacuum 2017, 141, 144–151. [Google Scholar] [CrossRef]
- Friedrich, H.E.; Mordike, B.L. Magnesium Technology Metallurgy, Design Data, Applications, 1st ed.; Springer: Berlin, Germany, 2006. [Google Scholar]
- Ghali, E. Corrosion Resistance of Aluminum and Magnesium Alloys, Understanding, Performance and Testing, 1st ed.; Wiley Publishing: Hoboken, NJ, USA, 2010. [Google Scholar]
- Candan, S.; Unal, M.; Koc, E.; Turen, Y.; Candan, E. Effects of titanium addition on mechanical and corrosion behaviours of AZ91 magnesium alloy. J. Alloys Compd. 2011, 509, 1958–1963. [Google Scholar] [CrossRef]
- Gusieva, K.; Davies, C.H.J.; Scully, J.R.; Birbilis, N. Corrosion of magnesium alloys: The role of alloying. Int. Mater. Rev. 2015, 60, 169–194. [Google Scholar] [CrossRef]
- Esmaily, M.; Shahabi-Navid, M.; Svensson, J.E.; Halvarsson, M.; Nyborg, L.; Cao, Y.; Johansson, L.G. Influence of temperature on the atmospheric corrosion of the Mg-Al alloy AM50. Corros. Sci. 2015, 90, 420–433. [Google Scholar] [CrossRef]
- Kim, B.; Park, K.; Kimura, H.; Park, Y.; Park, I. Influence of Addition of Ge on the Microstructure and Corrosion Properties of Magnesium. Mater. Trans. 2012, 53, 240–243. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.L.; Hurley, M.F.; Williams, A.; Kvryan, G.; Scully, J.R.; Birbilis, N. Controlling the corrosion and cathodic activation of magnesium via microalloying additions of Ge. Sci. Rep. 2016, 6, 28747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, R.L.; Zeng, Z.R.; Scully, J.R.; Williams, G.; Birbilis, N. Simultaneously improving the corrosion resistance and strength of magnesium via low levels of Zn and Ge additions. Corros. Sci. 2018, 140, 18–29. [Google Scholar] [CrossRef]
- Shibata, T.; Kawanishi, M.; Nagahora, J.; Inoue, A.; Masumoto, T. High specific strength of extruded Mg-Al-Ge alloys produced by rapid solidification processing. Mat. Sci. Eng. A 1994, 179, 632–636. [Google Scholar] [CrossRef]
- Islam, F.; Thykadavil, A.K.; Medraj, M. A computational thermodynamic model of the Mg-Al-Ge system. J. Alloys Compd. 2006, 425, 129–139. [Google Scholar] [CrossRef]
- Nayeb-Hashemi, A.A.; Clark, J.B. Phase Diagrams of Binary Magnesium Alloys; ASM International: Metals Park, OH, USA, 1988. [Google Scholar]
- Liu, M.; Qiu, D.; Zhao, M.C.; Song, G.; Atrens, A. The effect of crystallographic orientation on the active corrosion of pure magnesium. Scr. Mater. 2008, 58, 421–424. [Google Scholar] [CrossRef]
- Mandal, M.; Moon, A.P.; Deo, G.; Mendis, C.L.; Mondal, K. Corrosion behavior of Mg-2.4Zn alloy micro-alloyed with Ag and Ca. Corros. Sci. 2014, 78, 172–182. [Google Scholar] [CrossRef]
- Song, G.L.; Atrens, A.; Dargusch, M. Influence of microstructure on the corrosion of diecast AZ91D. Corros. Sci. 1999, 41, 249–273. [Google Scholar] [CrossRef]
- Zhao, M.C.; Liu, M.; Song, G.L.; Atrens, A. Influence of the b-phase morphology on the corrosion of the Mg alloy AZ91. Corros. Sci. 2008, 50, 1939–1953. [Google Scholar] [CrossRef]
- Du, X.Q.; Yang, Q.S.; Chen, Y.; Yang, Y.; Zhang, Z. Galvanic corrosion behavior of copper/titanium galvanic couple in artificial seawater. Trans. Nonferrous Met. Soc. China 2014, 24, 570–581. [Google Scholar] [CrossRef]
Samples | Al | Ge | Si | Mn | Fe | Mg |
---|---|---|---|---|---|---|
AG31 | 3.15 | 0.89 | 0.042 | 0.015 | 0.018 | Bal. |
AG33 | 3.05 | 3.14 | 0.045 | 0.013 | 0.016 | Bal. |
AG35 | 3.20 | 4.85 | 0.043 | 0.014 | 0.017 | Bal. |
Point | Mg | Al | Ge | |||
---|---|---|---|---|---|---|
wt% | at% | wt% | at% | wt% | at% | |
1 | 67.09 | 69.37 | 32.91 | 30.63 | - | - |
2 | 72.53 | 88.75 | - | - | 27.47 | 11.25 |
3 | 97.07 | 97.78 | 2.45 | 2.22 | 0.48 | 0.16 |
4 | 97.01 | 97.63 | 2.38 | 2.16 | 0.61 | 0.21 |
5 | 96.76 | 97.52 | 2.42 | 2.20 | 0.82 | 0.28 |
6 | 96.39 | 96.74 | 3.61 | 3.26 | - | - |
7 | 96.24 | 96.60 | 3.76 | 3.40 | - | - |
8 | 96.58 | 96.91 | 3.42 | 3.09 | - | - |
Alloy | Ecorr (V vs. SCE) | icorr (μA/cm2) | βa (V/dec) | βc (V/dec) |
---|---|---|---|---|
AG31 | −1.49 | 518.7 | 93.8 | 505.3 |
AG33 | −1.52 | 292.7 | 91.2 | 339.4 |
AG35 | −1.54 | 455.7 | 102.5 | 256.4 |
AG31H | −1.49 | 1 166.7 | 119.5 | 596.3 |
AG33H | −1.52 | 312.7 | 73.0 | 236.5 |
AG35H | −1.53 | 745.8 | 113.2 | 432.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Yin, M.; Zhang, S.; Wei, H.; Liu, B.; Du, H.; Hou, L.; Wei, Y. Corrosion Behavior of the As-Cast and As-Solid Solution Mg-Al-Ge Alloy. Materials 2018, 11, 1812. https://doi.org/10.3390/ma11101812
Liu X, Yin M, Zhang S, Wei H, Liu B, Du H, Hou L, Wei Y. Corrosion Behavior of the As-Cast and As-Solid Solution Mg-Al-Ge Alloy. Materials. 2018; 11(10):1812. https://doi.org/10.3390/ma11101812
Chicago/Turabian StyleLiu, Xiaoda, Ming Yin, Shaohua Zhang, Huan Wei, Baosheng Liu, Huayun Du, Lifeng Hou, and Yinghui Wei. 2018. "Corrosion Behavior of the As-Cast and As-Solid Solution Mg-Al-Ge Alloy" Materials 11, no. 10: 1812. https://doi.org/10.3390/ma11101812