Enhanced Photoelectrochemical Properties of Ti3+ Self-Doped Branched TiO2 Nanorod Arrays with Visible Light Absorption
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, G.M.; Wang, H.Y.; Ling, Y.C.; Tang, Y.C.; Yang, X.Y.; Fitzmorris, R.C.; Wang, C.C.; Zhang, J.Z.; Li, Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2011, 11, 3026–3033. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, Z.J.; Song, Y.; Yin, M.; Li, D.D.; Zhu, X.F.; Chen, X.Y.; Chang, P.C.; Lu, L.F. Fabrication and supercapacitive performance of long anodic TiO2 nantotube arrays using constant current anodization. Electrochem. Commun. 2016, 68, 23–27. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhang, Z.L.; Qin, J.Q.; Shi, W.J.; Liu, T.F.; Gao, H.P.; Mao, Y.L. Enhanced photovoltaic performance of perovskite solar cells based on Er-Yb co-doped TiO2 nanorod arrays. Electrochim. Acta 2017, 245, 839–845. [Google Scholar] [CrossRef]
- Verghese, O.K.; Paulose, M.; Grimes, C.A. Long vertically aligned titania nanotubes on transparent conductive oxide for highly efficient solar cells. Nat. Nanotechnol. 2009, 4, 592–597. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Shin, P.H.; Cao, L.; Wu, J.; Gao, D. Ordered TiO2 nanotube arrays on transparent conductive oxide for dye-sensitized solar cells. Chem. Mater. 2010, 22, 143–148. [Google Scholar] [CrossRef]
- Wang, H.; Guo, Z.G.; Wang, S.M.; Liu, W.M. One-dimensional titania nanostructures: Synthseis and application in dye-sensitized solar cells. Thin Solid Films 2014, 558, 1–19. [Google Scholar] [CrossRef]
- Liu, B.; Aydil, E.S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dyesensitized solar cells. J. Am. Chem. Soc. 2009, 131, 3985–3990. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.S.; Zhang, S.Q.; Peng, B.Y.; Wang, H.J.; Yu, H.; Wang, H.H.; Peng, F. High performance hydrogenated TiO2 nanorod arrays as a photoelectrochemical sensor for organic compounds under visible light. Electrochem. Commun. 2014, 40, 24–27. [Google Scholar] [CrossRef]
- Oh, J.K.; Lee, J.K.; Kim, H.S.; Han, S.B.; Park, K.W. TiO2 branched nanostructure electrodes synthesized by seeding method for dye-sensitized solar cells. Chem. Mater. 2010, 22, 1114–1118. [Google Scholar] [CrossRef]
- Cho, I.S.; Chen, Z.B.; Forman, A.J.; Kim, D.R.; Rao, P.M.; Jaramillo, T.F.; Zheng, X.L. Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 2011, 11, 4978–4984. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Bai, Y.S.; Wu, Q.; Zhou, W.; Zhang, H.; Li, J.H.; Guo, L. Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2011, 13, 7008–7013. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.S.; Liao, W.P.; Wu, J.J. Morphology and interfacial energetic controls for hierarchical anatase/rutile TiO2 nanostructured array for efficient photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2013, 5, 7425–7431. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.M.; Guo, Y.; Li, Y.H.; Zhou, X.F. Fabrication of Cd-doped TiO2 nanorod arrays and photovoltaic property in perovskite solar cell. Electrochim. Acta 2016, 200, 29–36. [Google Scholar] [CrossRef]
- Lv, M.Q.; Zheng, D.J.; Ye, M.D.; Xiao, J.; Guo, W.X.; Lai, Y.K.; Sun, L.; Lin, C.J.; Zuo, J. Optimized porous rutile TiO2 nanorod arrays for enhancing the efficiency of dye-sensitized solar cells. Energy Environ. Sci. 2013, 6, 1615–1622. [Google Scholar] [CrossRef]
- Bang, J.H.; Kamat, P. Solar cells by design: Photoelectrochemistry of TiO2 nanorod arrays decorated with CdSe. Adv. Funct. Mater. 2010, 20, 1970–1976. [Google Scholar] [CrossRef]
- Hu, A.; Wang, J.Y.; Qu, S.H.; Zhong, Z.C.; Wang, S.; Liang, G.J. Hydrothermal growth of branched hierarchical TiO2 nanorod arrays for application in dye-sensitized solar cells. J. Mater. Sci. Mater. Electron. 2017, 28, 3415–3422. [Google Scholar] [CrossRef]
- Wang, J.Y.; Qu, S.H.; Zhong, Z.C.; Wang, S.; Liu, K.; Hu, A.Z. Fabrication of TiO2 nanoparticles/nanorod composite arrays via a two-step method for efficient dye-sensitized solar cells. Prog. Nat. Sci. Mater. Int. 2014, 24, 588–592. [Google Scholar] [CrossRef]
- Huang, Q.L.; Zhou, G.; Fang, L.; Hu, L.P.; Wang, Z.S. TiO2 nanorod arrays grown from a mixed acid medium for efficient dye-sensitized solar cells. Energy Environ. Sci. 2011, 4, 2145–2151. [Google Scholar] [CrossRef]
- Li, K.; Huang, Z.Y.; Zeng, Z.Q.; Huang, B.B.; Gao, S.M.; Lu, J. Synergetic effect of Ti3+ and oxygen doping on enhancing photoelectrochemical and photocatalytic properties of TiO2/g-C3N4 heterojunctions. ACS Appl. Mater. Interfaces 2017, 9, 11577–11586. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Qiu, X.Q.; Miyauchi, M.; Hashimoto, K. Cu (II) oxide amorphous nanoclusters grafted Ti3+ self-doped TiO2: An efficient visible light photocatalyst. Chem. Mater. 2011, 23, 5282–5286. [Google Scholar] [CrossRef]
- Kong, L.N.; Wang, C.H.; Zheng, H.; Zhang, X.T.; Liu, Y.C. Defect-induced yellow color in Nb-doped TiO2 and its impact on visible-light photocatalysis. J. Phys. Chem. C 2015, 119, 16623–16632. [Google Scholar] [CrossRef]
- Zhang, Y.; Xing, Z.P.; Liu, X.F.; Li, Z.Z.; Wu, X.Y.; Jiang, J.J.; Ki, M.; Zhu, Q.; Zhou, W. Ti3+ self-doped blue TiO2 (B) single-crystalline nanorods for efficient solar-driven photocatalytic performance. ACS Appl. Mater. Interfaces 2016, 8, 26851–26859. [Google Scholar] [CrossRef] [PubMed]
- Zuo, F.; Wang, L.; Wu, T.; Zhang, Z.Y.; Borchardt, D.; Feng, P.Y. Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J. Am. Chem. Soc. 2010, 132, 11856–11857. [Google Scholar] [CrossRef] [PubMed]
- Fu, R.R.; Wang, Q.Y.; Gao, S.M.; Wang, Z.Y.; Huang, B.B.; Dai, Y.; Lu, J. Effect of different processes and Ti/Zn molar ratios on the structure, morphology, and enhanced photoelectrochemical and photocatalytic performance of Ti3+ self-doped titanium–zinc hybrid oxides. J. Power Sources 2015, 285, 449–459. [Google Scholar] [CrossRef]
- Su, J.; Zou, X.X.; Chen, J.S. Self-modification of titanium dioxide materials by Ti3+ and/or oxygen vacancies: new insights into defect chemistry of metal oxides. RSC Adv. 2014, 4, 13979–13988. [Google Scholar] [CrossRef]
- Chen, X.B.; Liu, L.; Huang, F.Q. Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 2015, 44, 1861–1885. [Google Scholar] [CrossRef] [PubMed]
- Chinnamuthu, P.; Mondal, A.; Singh, N.K.; Dhar, J.C.; Chattopadhyay, K.K.; Bhattacharya, S. Band gap enhancement of glancing angel deposited TiO2 nanowire array. J. Appl. Phys. 2012, 112, 054315. [Google Scholar] [CrossRef]
- Bu, J.; Fang, J.; Leow, W.R.; Zheng, K.H.; Chen, X.D. Single-crystalline rutile TiO2 nano-flower hierarchical structure for enhanced photocatalytic selective oxidation from amine to imine. RSC Adv. 2015, 5, 103895–103900. [Google Scholar] [CrossRef]
- Diedenhofen, S.L.; Vecchi, G.; Algra, R.E.; Hartsuiker, A.; Muskens, O.L.; Immink, G.; Bakkers, E.; Vos, W.L.; Rivas, J.G. Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods. Adv. Mater. 2009, 21, 973–978. [Google Scholar] [CrossRef]
- Zhang, S.S.; Wang, X.J.; Hu, J.Y.; Xie, Z.K.; Lei, H.G.; Peng, F. Design of two kinds of branched TiO2 nanoarray photoanodes and their comparison of photoelectrochemical performances. Electrochim. Acta 2017, 25, 368–373. [Google Scholar] [CrossRef]
- Liu, J.; Yu, X.L.; Liu, Q.Y.; Liu, R.J.; Shang, X.K.; Zhang, S.S.; Li, W.H.; Zheng, W.Q.; Zhang, G.J.; Cao, H.B.; Gu, Z.J. Surface-phase junctions of branched TiO2 nanorod arrays for efficient photoelectrochemical water splitting. Appl. Catal. B Environ. 2014, 158–159, 296–300. [Google Scholar] [CrossRef]
- Wang, L.Y.; Daoud, W.A. BiOI/TiO2-nanorod array heterojunction solar cell: Growth, charge transport kinetics and photoelectrochemical properties. Appl. Surf. Sci. 2015, 324, 532–537. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, Y.; Su, L.; Gao, W.Z.; Zhang, B.L.; Chu, H.R. Photoelectrochemical properties of CdS/CdSe sensitized TiO2 nanocable arrays. Electrochim. Acta 2015, 165, 110–115. [Google Scholar] [CrossRef]
- Lee, K.M.; Suryanarayanan, V.; Ho, K.C. A study on the electron transport properties of TiO2 electrodes in sye-snesitized solar cells. Sol. Energy Mater. Sol. Cells 2007, 91, 1416–1420. [Google Scholar] [CrossRef]
- Neto, S.Y.; Luz, R.C.S.; Damos, F.S. Visible LED light photoelectrochemical sensor for detection of L-dopa based on oxygen reduction on TiO2 sensitzied with iron phthalocyanine. Electrochem. Commun. 2016, 62, 1–4. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wang, X.; Yan, J.; Tan, Q.; Liang, G.; Qu, S.; Zhong, Z. Enhanced Photoelectrochemical Properties of Ti3+ Self-Doped Branched TiO2 Nanorod Arrays with Visible Light Absorption. Materials 2018, 11, 1791. https://doi.org/10.3390/ma11101791
Wang J, Wang X, Yan J, Tan Q, Liang G, Qu S, Zhong Z. Enhanced Photoelectrochemical Properties of Ti3+ Self-Doped Branched TiO2 Nanorod Arrays with Visible Light Absorption. Materials. 2018; 11(10):1791. https://doi.org/10.3390/ma11101791
Chicago/Turabian StyleWang, Jingyang, Xiantao Wang, Jun Yan, Qi Tan, Guijie Liang, Shaohua Qu, and Zhicheng Zhong. 2018. "Enhanced Photoelectrochemical Properties of Ti3+ Self-Doped Branched TiO2 Nanorod Arrays with Visible Light Absorption" Materials 11, no. 10: 1791. https://doi.org/10.3390/ma11101791
APA StyleWang, J., Wang, X., Yan, J., Tan, Q., Liang, G., Qu, S., & Zhong, Z. (2018). Enhanced Photoelectrochemical Properties of Ti3+ Self-Doped Branched TiO2 Nanorod Arrays with Visible Light Absorption. Materials, 11(10), 1791. https://doi.org/10.3390/ma11101791