Next Article in Journal
Carrier Multiplication Mechanisms and Competing Processes in Colloidal Semiconductor Nanostructures
Previous Article in Journal
Expanding the Applicability of Poly(Ionic Liquids) in Solid Phase Microextraction: Pyrrolidinium Coatings
Open AccessArticle

Large Electrocaloric Effect in Lead-Free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 Ceramics Prepared via Citrate Route

1
School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, China
2
Institute of Electronic and Electrical, Changzhou College of Information Technology, Changzhou 213164, China
3
School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
4
School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
5
Key Laboratory of Inorganic Function Material and Device, Chinese Academy of Sciences, Shanghai 201800, China
*
Authors to whom correspondence should be addressed.
Materials 2017, 10(9), 1093; https://doi.org/10.3390/ma10091093
Received: 6 August 2017 / Revised: 7 September 2017 / Accepted: 8 September 2017 / Published: 18 September 2017
(This article belongs to the Section Energy Materials)
The 1 wt % Li-doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 (BCZT-Li) ceramics prepared by the citrate method exhibit improved phase purity, densification and electrical properties, which provide prospective possibility to develop high-performance electrocaloric materials. The electrocaloric effect was evaluated by phenomenological method, and the BCZT-Li ceramics present large electrocaloric temperature change ∆T, especially large electrocaloric responsibility ξ = ∆Tmax/∆Emax, which can be comparable to the largest values reported in the lead-free piezoelectric ceramics. The excellent electrocaloric effect is considered as correlating with the coexistence of polymorphic ferroelectric phases, which are detected by the Raman spectroscopy. The large ξ value accompanied by decreased Curie temperature (around 73 °C) of the BCZT-Li ceramics prepared by the citrate method presents potential applications as the next-generation solid-state cooling devices. View Full-Text
Keywords: lead-free BCZT piezoceramics; citrate method; electrocaloric effect; Raman spectroscopy lead-free BCZT piezoceramics; citrate method; electrocaloric effect; Raman spectroscopy
Show Figures

Figure 1

MDPI and ACS Style

Shi, J.; Zhu, R.; Liu, X.; Fang, B.; Yuan, N.; Ding, J.; Luo, H. Large Electrocaloric Effect in Lead-Free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 Ceramics Prepared via Citrate Route. Materials 2017, 10, 1093.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop