The Application of a Novel Ceramic Liner Improves Bonding between Zirconia and Veneering Porcelain
Abstract
:1. Introduction
2. Results
2.1. Shear Bond Strength (SBS) Test
2.2. Coefficient of Linear Thermal Expansion (CTE)
2.3. Three-Point Flexural Strength (TPFS) Test
3. Discussion
4. Materials and Methods
4.1. Shear Bond Strength (SBS) Test
4.2. Coefficient of Linear Thermal Expansion (CTE)
4.3. Three-Point Flexural Strength (TPFS) Test
4.4. Statistical Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chaiyabutr, Y.; McGowan, S.; Phillips, K.M.; Kois, J.C.; Giordano, R.A. The effect of hydrofluoric acid surface treatment and bond strength of a zirconia veneering ceramic. J. Prosthet. Dent. 2008, 100, 194–202. [Google Scholar] [CrossRef]
- Liu, D.; Matinlinna, J.P.; Pow, E.H.N. Insights into porcelain to zirconia bonding. J. Adhes. Sci. Technol. 2012, 26, 1249–1265. [Google Scholar]
- Piconi, C.; Maccauro, G. Zirconia as a ceramic biomaterial. Biomaterials 1999, 20, 1–25. [Google Scholar] [CrossRef]
- Marinis, A.; Aquilino, S.A.; Lund, P.S.; Gratton, D.G.; Stanford, C.M.; Diaz-Arnold, A.M.; Qian, F. Fracture toughness of yttria-stabilized zirconia sintered in conventional and microwave ovens. J. Prosthet. Dent. 2013, 109, 165–171. [Google Scholar] [CrossRef]
- Lee, M.H.; Son, J.S.; Kim, K.H.; Kwon, T.Y. Improved resin-zirconia bonding by room temperature hydrofluoric acid etching. Materials 2015, 8, 850–866. [Google Scholar] [CrossRef] [PubMed]
- Benetti, P.; Pelogia, F.; Valandro, L.F.; Bottino, M.A.; Bona, A.D. The effect of porcelain thickness and surface liner application on the fracture behavior of a ceramic system. Dent. Mater. 2011, 27, 948–953. [Google Scholar] [CrossRef] [PubMed]
- Guess, P.C.; Kulis, A.; Witkowski, S.; Wolkewitz, M.; Zhang, Y.; Strub, J.R. Shear bond strengths between different zirconia cores and veneering ceramics and their susceptibility to thermocycling. Dent. Mater. 2008, 24, 1556–1567. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.Y.; Stoner, B.R.; Piascik, J.R.; Smith, R. Adhesion/cementation to zirconia and other non-silicate ceramics: where are we now? Dent. Mater. 2011, 27, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Benetti, P.; Della Bona, A.; Kelly, J.R. Evaluation of thermal compatibility between core and veneer dental ceramics using shear bond strength test and contact angle measurement. Dent. Mater. 2010, 26, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Komine, F.; Strub, J.R.; Matsumura, H. Bonding between layering materials and zirconia frameworks. Jpn. Dent. Sci. Rev. 2012, 48, 153–161. [Google Scholar] [CrossRef]
- Tholey, M.J.; Swain, M.V.; Thiel, N. SEM observations of porcelain Y-TZP interface. Dent. Mater. 2009, 25, 857–862. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Lim, H.P.; Park, Y.J.; Vang, M.S. Effect of zirconia surface treatments on the shear bond strength of veneering ceramic. J. Prosthet. Dent. 2011, 105, 315–322. [Google Scholar] [CrossRef]
- Sailer, I.; Fehér, A.; Filser, F.; Lüthy, H.; Gauckler, L.J.; Schärer, P.; Franz Hämmerle, C.H. Prospective clinical study of zirconia posterior fixed partial dentures: 3-year follow-up. Quintessence Int. 2006, 37, 685–693. [Google Scholar] [PubMed]
- Lima, J.M.; Souza, A.C.; Anami, L.C.; Bottino, M.A.; Melo, R.M.; Souza, R.O. Effects of thickness, processing technique, and cooling rate protocol on the flexural strength of a bilayer ceramic system. Dent. Mater. 2013, 29, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Swain, M.V. Unstable cracking (chipping) of veneering porcelain on all-ceramic dental crowns and fixed partial dentures. Acta Biomater. 2009, 5, 1668–1677. [Google Scholar] [CrossRef] [PubMed]
- Guazzato, M.; Walton, T.R.; Franklin, W.; Davis, G.; Bohl, C.; Klineberg, I. Influence of thickness and cooling rate on development of spontaneous cracks in porcelain/zirconia structures. Aust. Dent. J. 2010, 55, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Mainjot, A.K.; Schajer, G.S.; Vanheusden, A.J.; Sadoun, M.J. Influence of cooling rate on residual stress profile in veneering ceramic: Measurement by hole-drilling. Dent. Mater. 2011, 27, 906–914. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhang, S.; Bian, C.; Kong, H. Effect of zirconia surface treatment on zirconia/veneer interfacial toughness evaluated by fracture mechanics method. J. Dent. 2014, 42, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhang, S.; Bian, C.; Kong, H. Interface toughness of a zirconia-veneer system and the effect of a liner application. J. Prosthet. Dent. 2014, 112, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Tarumi, N.; Uo, M.; Yamaga, E.; Watari, F. SEM observation and wettability of variously processed and fractured surface of dental zirconia. Appl. Surf. Sci. 2012, 262, 253–257. [Google Scholar] [CrossRef]
- Aboushelib, M.N.; de Jager, N.; Kleverlaan, C.J.; Feilzer, A.J. Microtensile bond strength of different components of core veneered all-ceramic restorations. Dent. Mater. 2005, 21, 984–991. [Google Scholar] [CrossRef] [PubMed]
- Aboushelib, M.N.; Kleverlaan, C.J.; Feilzer, A.J. Microtensile bond strength of different components of core veneered all-ceramic restorations. Part II: Zirconia veneering ceramics. Dent. Mater. 2006, 22, 857–863. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.; Stawarzcyk, B.; Trottmann, A.; Hammerle, C.H. Impact of thermal misfit on shear strength of veneering ceramic/zirconia composites. Dent. Mater. 2009, 25, 419–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anusavice, K.J.; Dehoff, P.H.; Fairhurst, C.W. Comparative evaluation of ceramic-metal bond tests using finite element stress analysis. J. Dent. Res. 1980, 59, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Della Bona, A.; Anusavice, K.J.; DeHoff, P.H. Weibull analysis and flexural strength of hot-pressed core and veneered ceramic structures. Dent. Mater. 2003, 19, 662–669. [Google Scholar] [CrossRef]
- Vichi, A.; Sedda, M.; Del Siena, F.; Louca, C.; Ferrari, M. Flexural resistance of Cerec CAD/CAM system ceramic blocks. Part 1: Chairside materials. Am. J. Dent. 2013, 26, 255–259. [Google Scholar] [PubMed]
- Quinn, J.B.; Quinn, G.D. A practical and systematic review of Weibull statistics for reporting strengths of dental materials. Dent. Mater. 2010, 26, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Salazar Marocho, S.M.; Studart, A.R.; Bottino, M.A.; Bona, A.D. Mechanical strength and subcritical crack growth under wet cyclic loading of glass-infiltrated dental ceramics. Dent. Mater. 2010, 26, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Isgrò, G.; Kleverlaan, C.J.; Wang, H.; Feilzer, A.J. The influence of multiple firing on thermal contraction of ceramic materials used for the fabrication of layered all-ceramic dental restorations. Dent. Mater. 2005, 21, 557–564. [Google Scholar] [CrossRef] [PubMed]
- DeHoff, P.H.; Barrett, A.A.; Lee, R.B.; Anusavice, K.J. Thermal compatibility of dental ceramic systems using cylindrical and spherical geometries. Dent. Mater. 2008, 24, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Heffernan, M.J.; Aquilino, S.A.; Diaz-Arnold, A.M.; Haselton, D.R.; Stanford, C.M.; Vargas, M.A. Relative translucency of six all-ceramic systems. Part II: core and veneer materials. J. Prosthet. Dent. 2002, 88, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.E.; Waddell, J.N.; Swain, M.V. Pressed ceramics onto zirconia. Part 2: Indentation fracture and influence of cooling rate on residual stresses. Dent. Mater. 2011, 27, 1111–1118. [Google Scholar] [CrossRef] [PubMed]
- Vichi, A.; Sedda, M.; Bonadeo, G.; Bosco, M.; Barbiera, A.; Tsintsadze, N.; Carrabba, M.; Ferrari, M. Effect of repeated firings on flexural strength of veneered zirconia. Dent. Mater. 2015, 31, e151–e156. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Son, J.S.; Kim, K.H.; Kwon, T.Y. Influence of surface energy parameters of dental self-adhesive resin cements on bond strength to dentin. J. Adhes. Sci. Technol. 2013, 27, 1778–1789. [Google Scholar] [CrossRef]
- Özcan, M.; Valandro, L.F.; Pereira, S.M.; Amaral, R.; Bottino, M.A.; Pekkan, G. Effect of surface conditioning modalities on the repair bond strength of resin composite to the zirconia core/veneering ceramic complex. J. Adhes. Dent. 2013, 15, 207–210. [Google Scholar] [PubMed]
Material | Brand Name | Manufacturer | Chemical Composition | Batch Number |
---|---|---|---|---|
Zirconia | Cercon ht | Dentsply International Inc., York, PA, USA | ZrO2 (94%), Y2O3 (5%), Al2O3 (<1%), Si2O3 (<1%) 1 | 18016353 |
Veneering ceramic (porcelain) | Ceramco PFZ | Dentsply Ceramco, Burlington, NJ, USA | SiO2, Al2O3, Na2O, K2O, SnO2, CeO2, pigments, 1.3-Butanediol Xi 1 | 12001410 |
Commercial liner | HeraCeram Zr-Adhesive | Heraeus Kulzer, GmbH, Hanau, Germany | Not disclosed by the manufacturer | 2710 |
Experimental liners | Not applicable | Glycerol: Wako, Tokyo, Japan; ZrO2: Tosho Co., Tokyo, Japan; SiO2: Wako; Al2O3 and Na3AlF6: Junsei, Tokyo, Japan | ZrO2, SiO2, Al2O3, Na3AlF6 (glycerol-based) | Glycerol: PEH4633; ZrO2: S303555B; SiO2: DG2751; Al2O3: 2014B1581; Na3AlF6: 2011G1149 |
Groups | Shear Bond Strength 1 | Weibull Distribution Values 2 | Failure Mode 3 | |||||
---|---|---|---|---|---|---|---|---|
Mean ± SD in MPa | m | σ0 (MPa) | σ0.05 (MPa) | σ0.01 (MPa) | Adhesive | Cohesive | Mixed | |
NL | 23.6 ± 3.5 a | 7.6 | 25.1 | 17.0 | 13.7 | 0 | 0 | 15 |
CL | 23.0 ± 5.2 a | 4.7 | 25.2 | 13.4 | 9.5 | 3 | 0 | 12 |
EL0 | 25.2 ± 3.8 a | 7.4 | 26.8 | 17.9 | 14.4 | 0 | 0 | 15 |
EL3 | 34.2 ± 4.3 b | 8.9 | 36.1 | 25.9 | 21.5 | 0 | 0 | 15 |
EL6 | 24.1 ± 4.5 a | 5.9 | 25.9 | 15.7 | 11.9 | 1 | 0 | 14 |
EL9 | 22.2 ± 3.7 a | 6.2 | 23.2 | 14.4 | 11.0 | 0 | 0 | 15 |
Material Type | Brand Name or Code | Mean ± SD in 10−6 K−1 |
---|---|---|
Zirconia | Cercon ht | 10.7 ± 0.1 a,1 |
Veneering porcelain | Ceramco PFZ | 9.1 ± 0.1 b |
Commercial liner | HeraCeram Zr-Adhesive | 9.6 ± 0.1 c |
Experimental liner | EL3 | 9.5 ± 0.2 c |
Groups | Flexural Strength 1 | Weibull Distribution Values 2 | Failure Mode 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean ± SD in MPa | m | σ0 (MPa) | σ0.05 (MPa) | σ0.01 (MPa) | A | B | C | D | |
NL | 57.2 ± 9.3 a | 6.0 | 61.6 | 37.5 | 28.6 | 0 | 15 | 0 | 0 |
CL | 52.4 ± 17.6 a | 2.7 | 60.0 | 20.0 | 10.9 | 0 | 14 | 1 | 0 |
EL3 | 91.9 ± 14.0 b | 7.3 | 97.9 | 65.2 | 52.1 | 0 | 9 | 0 | 6 |
Materials | Drying Time (min) | Pre-Heating Time (min) | Starting Temp. (°C) | Heating Rate (°C/min) | Vacuum Start Temp. (°C) | Vacuum Stop Temp. (°C) | Final Temp. (°C) | Holding Time | Cooling Time (min) |
---|---|---|---|---|---|---|---|---|---|
Veneering porcelain | 5 | 5 | 450 | 60 | 450 | 900 | 900 | 15 s | 0 |
Liners | 5 | 1 | 600 | 100 | 600 | - | 1050 | 10 min | 0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-S.; Kwon, T.-Y. The Application of a Novel Ceramic Liner Improves Bonding between Zirconia and Veneering Porcelain. Materials 2017, 10, 1023. https://doi.org/10.3390/ma10091023
Lee H-S, Kwon T-Y. The Application of a Novel Ceramic Liner Improves Bonding between Zirconia and Veneering Porcelain. Materials. 2017; 10(9):1023. https://doi.org/10.3390/ma10091023
Chicago/Turabian StyleLee, Hee-Sung, and Tae-Yub Kwon. 2017. "The Application of a Novel Ceramic Liner Improves Bonding between Zirconia and Veneering Porcelain" Materials 10, no. 9: 1023. https://doi.org/10.3390/ma10091023
APA StyleLee, H.-S., & Kwon, T.-Y. (2017). The Application of a Novel Ceramic Liner Improves Bonding between Zirconia and Veneering Porcelain. Materials, 10(9), 1023. https://doi.org/10.3390/ma10091023