Energy Transfer Efficiency from ZnO-Nanocrystals to Eu3+ Ions Embedded in SiO2 Film for Emission at 614 nm
Abstract
:1. Introduction
2. Results and Discussion
2.1. Transfer Efficiency from Time-Resolved Photoluminescence Emission
2.2. Transfer Efficiency from Steady-State Photoluminescence Emission
3. Materials and Methods
4. Conclusions
Acknowledgement
Author Contributions
Conflicts of Interest
References
- Shi, Q.; Wang, C.; Li, S.; Wang, Q.; Zhang, B.; Wang, W.; Zhang, J.; Zhu, H. Enhancing blue luminescence from ce-doped zno nanophosphor by li doping. Nanoscale Res. Lett. 2014, 9, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Chen, R.; Shen, Y.Q.; Liu, B.; Gurzadyan, G.G.; Dong, Z.L.; Zhang, Q.Y.; Sun, H.D. Infrared emission properties and energy transfer in zno–sio2:Yb3+ composites. J. Alloys Compd. 2011, 509, 7794–7797. [Google Scholar] [CrossRef]
- Xiao, F.; Chen, R.; Shen, Y.Q.; Dong, Z.L.; Wang, H.H.; Zhang, Q.Y.; Sun, H.D. Efficient energy transfer and enhanced infrared emission in er-doped zno-sio2 composites. J. Phys. Chem. C 2012, 116, 13458–13462. [Google Scholar] [CrossRef]
- Das, R.; Khichar, N.; Chawla, S. Dual mode luminescence in rare earth (er3+/ho3+) doped zno nanoparticles fabricated by inclusive co precipitation technique. J. Mater. Sci. Mater. Electron. 2015, 26, 7174–7182. [Google Scholar] [CrossRef]
- Luo, L.; Huang, F.Y.; Dong, G.S.; Wang, Y.H.; Hu, Z.F.; Chen, J. White light emission and luminescence dynamics in eu3+/dy3+ codoped zno nanocrystals. J. Nanosci. Nanotechnol. 2016, 16, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Luo, W.; Li, R.; Liu, G.; Antonio, M.R.; Chen, X. Optical spectroscopy of eu3+ doped zno nanocrystals. J. Phys. Chem. C 2008, 112, 686–694. [Google Scholar] [CrossRef]
- Luo, L.; Huang, F.Y.; Dong, G.S.; Fan, H.H.; Li, K.F.; Cheah, K.W.; Chen, J. Strong luminescence and efficient energy transfer in eu3+/tb3+-codoped zno nanocrystals. Opt. Mater. 2014, 37, 470–475. [Google Scholar] [CrossRef]
- Huang, J.; Liu, S.; Gao, B.; Jiang, T.; Zhao, Y.; Liu, S.; Kuang, L.; Xu, X. Synthesis and optical properties of eu3+ doped zno nanoparticles used for white light emitting diodes. J. Nanosci. Nanotechnol. 2014, 14, 3052–3055. [Google Scholar] [CrossRef] [PubMed]
- Mangalam, V.; Pita, K.; Couteau, C. Study of energy transfer mechanism from zno nanocrystals to eu3+ ions. Nanoscale Res. Lett. 2016, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Pita, K.; Baudin, P.; Vu, Q.; Aad, R.; Couteau, C.; Lerondel, G. Annealing temperature and environment effects on zno nanocrystals embedded in sio2: A photoluminescence and tem study. Nanoscale Res. Lett. 2013, 8, 517. [Google Scholar] [CrossRef] [PubMed]
- Meulenkamp, E.A. Synthesis and growth of zno nanoparticles. J. Phys. Chem. B 1998, 102, 5566–5572. [Google Scholar] [CrossRef]
- Hamby, D.W.; Lucca, D.A.; Klopfstein, M.J.; Cantwell, G. Temperature dependent exciton photoluminescence of bulk zno. J. Appl. Phys. 2003, 93, 3214–3217. [Google Scholar] [CrossRef]
- Teke, A.; Özgür, Ü.; Doğan, S.; Gu, X.; Morkoç, H.; Nemeth, B.; Nause, J.; Everitt, H.O. Excitonic fine structure and recombination dynamics in single-crystalline zno. Phys. Rev. B 2004, 70. [Google Scholar] [CrossRef]
- Panigrahi, S.; Bera, A.; Basak, D. Ordered dispersion of zno quantum dots in sio2 matrix and its strong emission properties. J. Colloid Interface Sci. 2011, 353, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Mahamuni, S.; Borgohain, K.; Bendre, B.S.; Leppert, V.J.; Risbud, S.H. Spectroscopic and structural characterization of electrochemically grown zno quantum dots. J. Appl. Phys. 1999, 85, 2861–2865. [Google Scholar] [CrossRef]
- Denzler, D.; Olschewski, M.; Sattler, K. Luminescence studies of localized gap states in colloidal zns nanocrystals. J. Appl. Phys. 1998, 84, 2841–2845. [Google Scholar] [CrossRef]
- Haiping, H.; Yuxia, W.; Youming, Z. Photoluminescence property of zno–sio 2 composites synthesized by sol–gel method. J. Phys. D Appl. Phys. 2003, 36, 2972. [Google Scholar]
- Zhang, D.H.; Xue, Z.Y.; Wang, Q.P. The mechanisms of blue emission from zno films deposited on glass substrate by r.F. Magnetron sputtering. J. Phys. D Appl. Phys. 2002, 35, 2837. [Google Scholar] [CrossRef]
- Musa, I.; Massuyeau, F.; Cario, L.; Duvail, J.L.; Jobic, S.; Deniard, P.; Faulques, E. Temperature and size dependence of time-resolved exciton recombination in zno quantum dots. Appl. Phys. Lett. 2011, 99. [Google Scholar] [CrossRef]
- Schlegel, G.; Bohnenberger, J.; Potapova, I.; Mews, A. Fluorescence decay time of single semiconductor nanocrystals. Phys. Rev. Lett. 2002, 88. [Google Scholar] [CrossRef] [PubMed]
- Zatryb, G.; Podhorodecki, A.; Misiewicz, J.; Cardin, J.; Gourbilleau, F. On the nature of the stretched exponential photoluminescence decay for silicon nanocrystals. Nanoscale Res. Lett. 2011, 6, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linnros, J.; Lalic, N.; Galeckas, A.; Grivickas, V. Analysis of the stretched exponential photoluminescence decay from nanometer-sized silicon crystals in sio2. J. Appl. Phys. 1999, 86, 6128–6134. [Google Scholar] [CrossRef]
- Brongersma, M.L.; Polman, A.; Min, K.S.; Boer, E.; Tambo, T.; Atwater, H.A. Tuning the emission wavelength of si nanocrystals in sio2 by oxidation. Appl. Phys. Lett. 1998, 72, 2577–2579. [Google Scholar] [CrossRef]
- Savchyn, O.; Ruhge, F.R.; Kik, P.G.; Todi, R.M.; Coffey, K.R.; Nukala, H.; Heinrich, H. Luminescence-center-mediated excitation as the dominant er sensitization mechanism in er-doped silicon-rich SiO2 films. Phys. Rev. B 2007, 76. [Google Scholar] [CrossRef]
- Franzò, G.; Vinciguerra, V.; Priolo, F. The excitation mechanism of rare-earth ions in silicon nanocrystals. Appl. Phys. A 1999, 69, 3–12. [Google Scholar] [CrossRef]
- Wang, Y.; Ta, V.D.; Gao, Y.; He, T.C.; Chen, R.; Mutlugun, E.; Demir, H.V.; Sun, H.D. Stimulated emission and lasing from cdse/cds/zns core-multi-shell quantum dots by simultaneous three-photon absorption. Adv. Mater. 2014, 26, 2954–2961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | Emission Wavelength | (ps) | |
---|---|---|---|
ZnO-nc:SiO2 | 360 nm | 215 ± 8 | 0.65 ± 0.02 |
Eu3+:ZnO-nc:SiO2 | (QC) | 102 ± 7 | 0.69 ± 0.02 |
ZnO-nc:SiO2 | 378 nm | 213 ± 4 | 0.62 ± 0.01 |
Eu3+:ZnO-nc:SiO2 | (EE) | 84 ± 4 | 0.62 ± 0.01 |
ZnO-nc:SiO2 | 396 nm | 264 ± 6 | 0.61 ± 0.01 |
Eu3+:ZnO-nc:SiO2 | (Zni to VZn) | 95 ± 5 | 0.61 ± 0.01 |
ZnO-nc:SiO2 | 417 nm | 356 ± 15 | 0.62 ± 0.02 |
Eu3+:ZnO-nc:SiO2 | (Oi) | 125 ± 10 | 0.62 ± 0.02 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangalam, V.; Pita, K. Energy Transfer Efficiency from ZnO-Nanocrystals to Eu3+ Ions Embedded in SiO2 Film for Emission at 614 nm. Materials 2017, 10, 930. https://doi.org/10.3390/ma10080930
Mangalam V, Pita K. Energy Transfer Efficiency from ZnO-Nanocrystals to Eu3+ Ions Embedded in SiO2 Film for Emission at 614 nm. Materials. 2017; 10(8):930. https://doi.org/10.3390/ma10080930
Chicago/Turabian StyleMangalam, Vivek, and Kantisara Pita. 2017. "Energy Transfer Efficiency from ZnO-Nanocrystals to Eu3+ Ions Embedded in SiO2 Film for Emission at 614 nm" Materials 10, no. 8: 930. https://doi.org/10.3390/ma10080930
APA StyleMangalam, V., & Pita, K. (2017). Energy Transfer Efficiency from ZnO-Nanocrystals to Eu3+ Ions Embedded in SiO2 Film for Emission at 614 nm. Materials, 10(8), 930. https://doi.org/10.3390/ma10080930