Short-Term Behavior of Slag Concretes Exposed to a Real In Situ Mediterranean Climate Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Environmental Conditions
2.3. Mercury Intrusion Porosimetry
2.4. Capillary Absorption Test
2.5. Forced Migration Test
2.6. Carbonation Front Depth
2.7. Compressive Strength
3. Results
3.1. Mercury Intrusion Porosimetry
3.2. Capillary Absorption Test
3.3. Forced Migration Test
3.4. Carbonation Front Depth
3.5. Compressive Strength
4. Discussion
4.1. Microstructure Characterization
4.2. Durability-Related Parameters
4.3. Compressive Strength
5. Conclusions
- The lower average environmental temperature and relative humidity of the real in situ Mediterranean climate condition seems to reduce the microstructure and service properties development rate for the studied concretes, probably due to the slowing down of the clinker and slag hydration caused by this non-optimal condition.
- The evolution of microstructure parameters observed for the slag cement concretes kept under the different environmental conditions studied, would reveal a higher sensitivity of slag hydration to hardening temperature.
- The additional seven-day curing, provided to a part of the samples exposed to the real in situ Mediterranean climate environment, overall improved the microstructure and service properties of the studied materials at shorter ages, although it hardly had an influence in their results at 180 days.
- In general, the pore network of slag cement concretes was more refined than that observed for CEM I ones, which could be related to the additional solid phases formed as products of slag hydration.
- The capillary suction coefficient and the effective porosity results would suggest that the slag addition could have a beneficial effect in relation to the reduction of the ingress rate of water in cement-based materials and the volume of pores accessible for water, even when they are exposed to a real in situ Mediterranean climate environment.
- The lowest non-steady state chloride migration coefficients were noted for CEM III samples, independently of the environmental and curing condition. This could be related to the pore network refinement produced by the slag compared to clinker and by the higher binding capacity of slag cement.
- At 180 days, the slag concretes hardened in the real in situ Mediterranean climate environment (with and without seven days of additional curing) showed higher carbonation front depths compared to CEM I concretes. Despite that, this has not produced a reduction on the durability and mechanical strength performance of the studied slag concretes.
- At the majority of testing ages and for all studied conditions, the highest compressive strengths corresponded to CEM III samples. This result would mean that slag cement concretes could have good mechanical behavior in the short-term when they are kept under a real in situ Mediterranean climate environment.
- Considering the results obtained in this research, concretes prepared using a sustainable cement with high content of slag and exposed to a real in situ Mediterranean climate environment, show good service properties in the short-term (180 days), which would be similar or even better compared to concretes made with ordinary Portland cement.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Demirboğa, R. Thermal conductivity and compressive strength of concrete incorporation with mineral admixtures. Build. Environ. 2007, 42, 2467–2471. [Google Scholar] [CrossRef]
- Ganjian, E.; Pouya, H.S. Effect of magnesium and sulfate ions on durability of silica fume blended mixes exposed to the seawater tidal zone. Cem. Concr. Res. 2005, 35, 1332–1343. [Google Scholar] [CrossRef]
- Ponikiewski, T.; Gołaszewski, J. The effect of high-calcium fly ash on selected properties of self-compacting concrete. Arch. Civ. Mech. Eng. 2014, 14, 455–465. [Google Scholar] [CrossRef]
- Ortega, J.M.; Sánchez, I.; Climent, M.A. Impedance spectroscopy study of the effect of environmental conditions in the microstructure development of OPC and slag cement mortars. Arch. Civ. Mech. Eng. 2015, 15, 569–583. [Google Scholar] [CrossRef]
- Glinicki, M.; Jóźwiak-Niedźwiedzka, D.; Gibas, K.; Dąbrowski, M. Influence of blended cements with calcareous fly ash on chloride ion migration and carbonation resistance of concrete for durable structures. Materials (Basel) 2016, 9, 18. [Google Scholar] [CrossRef]
- Ortega, J.M.; Esteban, M.D.; Rodríguez, R.R.; Pastor, J.L.; Sánchez, I. Microstructural effects of sulphate attack in sustainable grouts for micropiles. Materials (Basel) 2016, 9, 905. [Google Scholar] [CrossRef]
- Ortega, J.M.; Esteban, M.D.; Rodríguez, R.R.; Pastor, J.L.; Ibanco, F.J.; Sánchez, I.; Climent, M.Á. Long-term behavior of fly ash and slag cement grouts for micropiles exposed to a sulphate aggressive medium. Materials 2017, 10, 598. [Google Scholar]
- Williams, M.; Ortega, J.M.; Sánchez, I.; Cabeza, M.; Climent, M.A. Non-destructive study of the microstructural effects of sodium and magnesium sulphate attack on mortars containing silica fume using impedance spectroscopy. Appl. Sci. 2017, 7, 648. [Google Scholar] [CrossRef]
- Sanderson, R.A.; Cann, G.M.; Provis, J.L. Comparison of calorimetric methods for the assessment of slag cement hydration. Adv. Appl. Ceram. 2017, 116, 186–192. [Google Scholar] [CrossRef]
- Myers, R.J.; Bernal, S.A.; Provis, J.L. Phase diagrams for alkali-activated slag binders. Cem. Concr. Res. 2017, 95, 30–38. [Google Scholar] [CrossRef]
- Roviello, G.; Ricciotti, L.; Tarallo, O.; Ferone, C.; Colangelo, F.; Roviello, V.; Cioffi, R. Innovative fly ash geopolymer-epoxy composites: Preparation, microstructure and mechanical properties. Materials (Basel) 2016, 9, 461. [Google Scholar] [CrossRef] [PubMed]
- Bijen, J. Benefits of slag and fly ash. Constr. Build. Mater. 1996, 10, 309–314. [Google Scholar] [CrossRef]
- Bouikni, A.; Swamy, R.N.; Bali, A. Durability properties of concrete containing 50% and 65% slag. Constr. Build. Mater. 2009, 23, 2836–2845. [Google Scholar] [CrossRef]
- Ortega, J.M.; Sánchez, I.; Climent, M.A. Durability related transport properties of OPC and slag cement mortars hardened under different environmental conditions. Constr. Build. Mater. 2012, 27, 176–183. [Google Scholar] [CrossRef]
- Wedding, P.; Manmohan, D.; Mehta, P. Influence of pozzolanic, slag, and chemical admixtures on pore size distribution and permeability of hardened cement pastes. Cem. Concr. Aggreg. 1981, 3, 63. [Google Scholar] [CrossRef]
- Ortega, J.M.; Pastor, J.L.; Albaladejo, A.; Sánchez, I.; Climent, M.A. Durability and compressive strength of blast furnace slag-based cement grout for special geotechnical applications. Mater. Constr. 2014, 64, e003. [Google Scholar] [CrossRef] [Green Version]
- Geiseler, J.; Kollo, H.; Lang, E. Influence of blast furnace cements on durability of concrete structures. ACI Mater. J. 1995, 92, 252–257. [Google Scholar]
- Thomas, M.D.A.; Scott, A.; Bremner, T.; Bilodeau, A.; Day, D. Performance of slag concrete in marine environment. ACI Mater. J. 2008, 105, 628–634. [Google Scholar]
- Ortega, J.M.; Albaladejo, A.; Pastor, J.L.; Sánchez, I.; Climent, M.A. Influence of using slag cement on the microstructure and durability related properties of cement grouts for micropiles. Constr. Build. Mater. 2013, 38, 84–93. [Google Scholar] [CrossRef]
- Detwiler, R.J.; Kjellsen, K.O.; Gjorv, O.E. Resistance to chloride intrusion of concrete cured at different temperatures. ACI Mater. J. 1991, 88, 19–24. [Google Scholar]
- Çakır, Ö.; Aköz, F. Effect of curing conditions on the mortars with and without GGBFS. Constr. Build. Mater. 2008, 22, 308–314. [Google Scholar] [CrossRef]
- Ramezanianpour, A.A.; Malhotra, V.M. Effect of curing on the compressive strength, resistance to chloride-ion penetration and porosity of concretes incorporating slag, fly ash or silica fume. Cem. Concr. Compos. 1995, 17, 125–133. [Google Scholar] [CrossRef]
- Scott, A.N.; Thomas, M.D.A.; Bremner, T.W. Marine performance of concrete containing fly ash and slag. In Proceedings of the Canadian Society for Civil Engineering Annual Conference 2009, St. Johns, NL, Canada, 27–30 May 2009; Volume 3, pp. 1559–1568. [Google Scholar]
- Shattaf, N.R.; Alshamsi, A.M.; Swamy, R.N. Curing/environment effect on pore structure of blended cement concrete. J. Mater. Civ. Eng. 2001, 13, 380–388. [Google Scholar] [CrossRef]
- Pasupathy, K.; Berndt, M.; Castel, A.; Sanjayan, J.; Pathmanathan, R. Carbonation of a blended slag-fly ash geopolymer concrete in field conditions after 8 years. Constr. Build. Mater. 2016, 125, 661–669. [Google Scholar] [CrossRef]
- Polder, R.B.; De Rooij, M.R. Durability of marine concrete structures—Field investigations and modelling. Heron 2005, 50, 133–154. [Google Scholar]
- Asociación Española de Normalización y Certificación (AENOR). UNE-EN 197-1:2011. Composición, Especificaciones y Criterios de Conformidad de Los Cementos Comunes; AENOR: Madrid, Spain, 2011; p. 30. [Google Scholar]
- Comisión permanente del. Instrucción De Hormigón Estructural EHE-08; Ministerio de Fomento: Madrid, Spain, 2008.
- European Committee for Standardization. EN 1992-1-1 Eurocode 2: Design of Concrete Structures-Part1–1: General Rules and Rules for Buildings; Committee European Normalization (CEN): Brussels, Belgium, 2004. [Google Scholar]
- Diamond, S. Aspects of concrete porosity revisited. Cem. Concr. Res. 1999, 29, 1181–1188. [Google Scholar] [CrossRef]
- Diamond, S. Mercury porosimetry. An inappropriate method for the measurement of pore size distributions in cementbased materials. Cem. Concr. Res. 2000, 30, 1517–1525. [Google Scholar] [CrossRef]
- Asociación Española de Normalización y Certificación (AENOR). UNE 83982:2008. Durabilidad del Hormigón. Métodos de Ensayo. Determinación de La Absorción de Agua Por Capilaridad del Hormigón Endurecido. Método Fagerlund; AENOR: Madrid, Spain, 2008; p. 8. [Google Scholar]
- Ortega, J.M.; Sánchez, I.; Antón, C.; De Vera, G.; Climent, M.A. Influence of environment on durability of fly ash cement mortars. ACI Mater. J. 2012, 109, 647–656. [Google Scholar]
- Rilem recommendation TC 116-PCD. Permeability of concrete as a criterion of its durability. Mater. Struct. 1999, 32, 174–179. [Google Scholar]
- Nordtest. NT Build 492. Concrete, Mortar and Cement-Based Repair Materials: Chloride Migration Coefficient from Non-Steady-State Migration Experiments; Espoo: Greater Helsinki, Finland, 1999; p. 8. [Google Scholar]
- Asociación Española de Normalización y Certificación (AENOR). UNE-EN 12390–3:2009. Ensayos de Hormigón Endurecido. Parte 3: Determinación de La Resistencia a Compresión de Probetas; AENOR: Madrid, Spain, 2009; p. 22. [Google Scholar]
- Kanna, V.; Olson, R.A.; Jennings, H.M. Effect of shrinkage and moisture content on the physical characteristics of blended cement mortars. Cem. Concr. Res. 1998, 28, 1467–1477. [Google Scholar] [CrossRef]
- Cabeza, M.; Merino, P.; Miranda, A.; Nóvoa, X.R.; Sanchez, I. Impedance spectroscopy study of hardened Portland cement paste. Cem. Concr. Res. 2002, 32, 881–891. [Google Scholar] [CrossRef]
- Baroghel-Bouny, V. Water vapour sorption experiments on hardened cementitious materials. Cem. Concr. Res. 2007, 37, 414–437. [Google Scholar] [CrossRef]
- Leng, F.; Feng, N.; Lu, X. An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete. Cem. Concr. Res. 2000, 30, 989–992. [Google Scholar] [CrossRef]
Component | CEM I | CEM III | ||
---|---|---|---|---|
UNE-EN 197-1 Standard [27] | Manufacturer Data 1 | UNE-EN 197-1 Standard [27] | Manufacturer Data 1 | |
Cement | 95–100% | 95% | 20–34% | 31% |
Limestone | - | 5% | - | - |
Blast-furnace slag | - | - | 66–80% | 69% |
Component | Kg/m3 |
---|---|
Cement | 350 |
Coarse aggregate 4–6 | 489.5 |
Coarse aggregate 6–12 | 714 |
Sand | 662.75 |
Water | 175 |
Plasticiser | 5.25 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortega, J.M.; Sánchez, I.; Cabeza, M.; Climent, M.Á. Short-Term Behavior of Slag Concretes Exposed to a Real In Situ Mediterranean Climate Environment. Materials 2017, 10, 915. https://doi.org/10.3390/ma10080915
Ortega JM, Sánchez I, Cabeza M, Climent MÁ. Short-Term Behavior of Slag Concretes Exposed to a Real In Situ Mediterranean Climate Environment. Materials. 2017; 10(8):915. https://doi.org/10.3390/ma10080915
Chicago/Turabian StyleOrtega, José Marcos, Isidro Sánchez, Marta Cabeza, and Miguel Ángel Climent. 2017. "Short-Term Behavior of Slag Concretes Exposed to a Real In Situ Mediterranean Climate Environment" Materials 10, no. 8: 915. https://doi.org/10.3390/ma10080915
APA StyleOrtega, J. M., Sánchez, I., Cabeza, M., & Climent, M. Á. (2017). Short-Term Behavior of Slag Concretes Exposed to a Real In Situ Mediterranean Climate Environment. Materials, 10(8), 915. https://doi.org/10.3390/ma10080915