Grain Boundary Character Dependence on Nucleation of Discontinuous Precipitates in Cu-Ti Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Datta, A.; Soffa, W.A. The structure and properties of age hardened Cu-Ti alloys. Acta Metall. 1976, 24, 987–1001. [Google Scholar] [CrossRef]
- Miyake, J.; Fine, M.E. Electrical conductivity versus strength in a precipitation hardened alloy. Acta Metall. 1992, 40, 733–741. [Google Scholar] [CrossRef]
- Nagarjuna, S.; Srinivas, M.; Balasubramanian, K.; Sarma, D.S. The alloy content and grain size dependence of flow stress in Cu-Ti alloys. Acta Mater. 1996, 44, 2285–2293. [Google Scholar] [CrossRef]
- Nagarjuna, S.; Balasubramanian, K.; Sarma, D.S. Effect of prior cold work on mechanical properties and structure of an age-hardened Cu-1.5 wt. % Ti alloy. J. Mater. Sci. 1997, 32, 3375–3385. [Google Scholar] [CrossRef]
- Semboshi, S.; Konno, T.J. Effect of aging in hydrogen atmosphere on electrical conductivity of Cu-3 at. % Ti alloy. J. Mater. Res. 2008, 23, 473–477. [Google Scholar] [CrossRef]
- Si, L.; Zhou, L.; Zhu, X.; Sanhua, L.; Qiyi, D. Microstructure and property of Cu-2.7Ti-0.15Mg-0.1Ce-0.1Zr alloy treated with a combined aging process. Mater. Sci. Eng. A 2016, 650, 345–353. [Google Scholar] [CrossRef]
- Knights, R.; Wilkers, P. The precipitation of titanium in copper and copper-nickel base alloy. Acta Metall. 1973, 21, 1503–1514. [Google Scholar] [CrossRef]
- Laughlin, D.E.; Cahn, J.W. Spinodal decomposition in age hardening copper-titanium alloys. Acta Metall. 1975, 23, 329–339. [Google Scholar] [CrossRef]
- Soffa, W.A.; Laughlin, D.E. Decomposition and ordering processes involving thermodynamically first-order order → disorder transformation. Acta Metall. 1989, 37, 3019–3028. [Google Scholar] [CrossRef]
- Hameda, A.A.; Blaz, L. Microstructure of hot-deformed Cu-3.45 wt. % Ti alloy. Mater. Sci. Eng. A 1998, 254, 83–89. [Google Scholar] [CrossRef]
- Borchers, C. Catastrophic nucleation during decomposition of Cu-0.9 at. % Ti. Philos. Mag. A. 1999, 79, 537–547. [Google Scholar] [CrossRef]
- Soffa, W.A.; Laughlin, D.E. High-strength age hardening copper-titanium alloys: Redivivus. Prog. Mater. Sci. 2004, 49, 347–366. [Google Scholar] [CrossRef]
- Semboshi, S.; Sato, S.; Ishikuro, M.; Wagatsuma, K.; Iwase, A.; Takasugi, T. Investigation of precipitation behavior in age-hardenable Cu-Ti alloys by an extraction-based approach. Metall. Mater. Trans. A 2014, 45, 3401–3411. [Google Scholar] [CrossRef]
- Semboshi, S.; Amano, S.; Fu, J.; Iwase, A.; Takasugi, T. Kinetics and equilibrium of age-induced precipitation in Cu-Ti binary alloys. Metall. Mater. Trans. A 2017, 48, 1501–1511. [Google Scholar] [CrossRef]
- Chen, S.; Duan, Y.H.; Huang, B.; Hu, W.C. Structural properties, phase stability, elastic properties and electronic structures of Cu-Ti intermetallics. Philos. Mag. 2015, 95, 3535–3553. [Google Scholar] [CrossRef]
- Zhu, Y.D.; Yan, M.F.; Zhang, Y.X.; Zhang, C.S. First-principles investigation of structural, mechanical and electronic properties for Cu-Ti intermetallics. Comput. Mater. Sci. 2016, 123, 70–78. [Google Scholar] [CrossRef]
- Ecob, R.C.; Bee, J.V.; Ralph, B. The cellular reaction in dilute copper-titanium alloys. Metall. Mater. Trans. A 1980, 11A, 1407–1414. [Google Scholar] [CrossRef]
- Fonda, R.W.; Shiflet, G.J. The cellular interlamellar and growth-front interphase boundaries in Cu-3 wt pct Ti. Metall. Mater. Trans. A 2002, 33A, 2507–2518. [Google Scholar] [CrossRef]
- Hutchinson, C.R.; Hackenberg, R.E.; Shiflet, G.J. A comparison of EDS microanalysis in FIB-prepared and electropolished TEM thin foils. Ultramicroscopy 2003, 94, 37–48. [Google Scholar] [CrossRef]
- Tu, K.N.; Turnbull, D. Morphology of cellular precipitation of tin from lead-tin bicrystals. Acta Metall. 1967, 15, 369–376. [Google Scholar] [CrossRef]
- Hornbogen, E. Systematics of the cellular precipitation reactions. Metal. Trans. 1972, 3, 2717–2727. [Google Scholar] [CrossRef]
- Bonfield, W.; Edwards, B.C. Precipitation hardening in Cu 1.81 wt. % Be 0.28 wt. % Co. J. Mater. Sci. 1974, 9, 409–414. [Google Scholar] [CrossRef]
- Williams, D.B.; Edington, J.W. The discontinuous precipitation reaction in dilute Al-Li alloys. Acta Mater. 1976, 24, 323–332. [Google Scholar] [CrossRef]
- Tsubakino, H. Discontinuous Precipitation in a Cu-Sn alloy. Metallography 1984, 17, 371–382. [Google Scholar] [CrossRef]
- Nystrom, J.D.; Pollock, T.M.; Murphy, W.H.; Garg, A. Discontinuous cellular precipitation in a high-refractory nickel-based superalloy. Metal. Mater. Trans. A 1997, 28A, 2443–2452. [Google Scholar] [CrossRef]
- Hirth, S.; Gottstein, G. Misorientation effects on discontinuous precipitation in Al-Ag-Ga. Acta Mater. 1998, 46, 3975–3984. [Google Scholar] [CrossRef]
- Cahn, J.W. The kinetics of grain boundary nucleated reaction. Acta Metall. 1956, 4, 449–459. [Google Scholar] [CrossRef]
- Findik, F. Discontinuous (cellular) precipitation. J. Mater. Sci. Lett. 1998, 17, 79–83. [Google Scholar] [CrossRef]
- Randle, V.; Rohrer, G.S.; Miller, H.M.; Coleman, M.; Owen, G.T. Five-parameter grain boundary distribution of commercially grain boundary engineering nickel and copper. Acta Metall. 2008, 56, 2363–2373. [Google Scholar]
- Robson, J.D. Modeling competitive continuous and discontinuous precipitation. Acta Metall. 2013, 61, 7781–7790. [Google Scholar] [CrossRef]
- Aaronson, H.I.; Enomoto, M.; Lee, J.K. Mechanisms of Diffusional Phase Transformations in Metals and Alloys, 1st ed.; CRC Press: New York, NY, USA, 2010; pp. 540–574. [Google Scholar]
- Semboshi, S.; Hinamoto, E.; Iwase, A. Age-hardening behavior of a single-crystal Cu-Ti alloy. Mater. Lett. 2014, 131, 90–93. [Google Scholar] [CrossRef]
- Tu, K.N.; Turnbull, D. Morphology of cellular precipitation of tin from lead-tin bicrystals-II. Acta Metall. 1967, 15, 1317–1323. [Google Scholar] [CrossRef]
- Liu, Y.C.; Aaronson, H.I. Kinetics of the cellular reaction in oriented bicrystals of Pb-7 at. % Sn. Acta Metall. 1968, 16, 1343–1358. [Google Scholar] [CrossRef]
- Monzen, R.; Watanabe, C.; Mino, D.; Saida, S. Initiation and growth of the discontinuous precipitation reaction at [011] symmetric tilt boundaries in Cu-Be bicrystals. Acta Metall. 2005, 53, 1253–1261. [Google Scholar] [CrossRef]
- Brandon, D.G. The structure of high-angle grain boundaries. Acta Metall. 1966, 12, 1479–1484. [Google Scholar] [CrossRef]
- Kaneno, Y.; Takasugi, T. Grain-boundary character distribution in recrystallized L12 ordered intermetallic alloys. Metal. Mater. Trans. A 2003, 34A, 2429–2439. [Google Scholar] [CrossRef]
- Randle, V. Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials. Acta Metall. 1999, 47, 4187–4196. [Google Scholar] [CrossRef]
- Humphreys, F.J.; Hatherly, M. Recrystallization and Related Annealing Phenomena, 2nd ed.; Elsevier: London, UK, 2004; pp. 91–118. [Google Scholar]
- Olmsted, D.L.; Foiles, S.M.; Holm, E.A. Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Mater. 2009, 57, 3694–3703. [Google Scholar] [CrossRef]
- Gleiter, H. The segregation of copper at high angle grain boundaries in lead. Acta Metall. 1970, 18, 117–121. [Google Scholar] [CrossRef]
- Sautter, H.; Gleiter, H.; Baro, G. The effect of solute atoms on the energy and structure of grain boundaries. Acta Metall. 1977, 25, 467–473. [Google Scholar] [CrossRef]
- Semboshi, S.; Ikeda, J.; Iwase, A.; Takasugi, T.; Suzuki, S. Effect of Boron Doping on Cellular Discontinuous Precipitation for Age-Hardenable Cu-Ti Alloys. Materials 2015, 8, 3467–3478. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semboshi, S.; Sato, M.; Kaneno, Y.; Iwase, A.; Takasugi, T. Grain Boundary Character Dependence on Nucleation of Discontinuous Precipitates in Cu-Ti Alloys. Materials 2017, 10, 415. https://doi.org/10.3390/ma10040415
Semboshi S, Sato M, Kaneno Y, Iwase A, Takasugi T. Grain Boundary Character Dependence on Nucleation of Discontinuous Precipitates in Cu-Ti Alloys. Materials. 2017; 10(4):415. https://doi.org/10.3390/ma10040415
Chicago/Turabian StyleSemboshi, Satoshi, Mitsutaka Sato, Yasuyuki Kaneno, Akihiro Iwase, and Takayuki Takasugi. 2017. "Grain Boundary Character Dependence on Nucleation of Discontinuous Precipitates in Cu-Ti Alloys" Materials 10, no. 4: 415. https://doi.org/10.3390/ma10040415
APA StyleSemboshi, S., Sato, M., Kaneno, Y., Iwase, A., & Takasugi, T. (2017). Grain Boundary Character Dependence on Nucleation of Discontinuous Precipitates in Cu-Ti Alloys. Materials, 10(4), 415. https://doi.org/10.3390/ma10040415