Study on Damage Evaluation and Machinability of UD-CFRP for the Orthogonal Cutting Operation Using Scanning Acoustic Microscopy and the Finite Element Method
Abstract
:1. Introduction
2. Experimental Details
2.1. Fabrication of CFRP Laminates
2.2. Experimental Setup and Parameters
2.3. Damage Analysis with Scanning Acoustic Microscopy
2.4. Damage Determination
3. Numerical Modeling of Orthogonal Cutting in UD-CFRP
3.1. Description of the Basic Model
3.2. Failure Criterion and Element Deletion
4. Results and Discussion
4.1. Results of Orthogonal Cutting Experiments
4.1.1. Effects of Cutting Parameters and FOA on Cutting Force and Thrust Force
4.1.2. Evaluation of Damage Factors
4.2. FE Model Validation
4.3. Prediction and Optimization of UD-CFRP Orthogonal Cutting Process
5. Conclusions
- The FE model has been validated and a good agreement with the experimental data has been found. Furthermore, the optimal cutting parameters have been predicted and the damage factors have been achieved by the model.
- The fiber orientation angle plays the most crucial role in determining the performance of orthogonal cutting for UD-CFRP, and significantly affects the values of the cutting force, the thrust force, and the cutting induced damage. UD-CFRP has an excellent machined surface quality and internal integrity when the fiber orientation is 0° and 90°.
- Enhancing the depth of cut can aggravate the cutting damage noticeably, while increasing the cutting speed relieves it. Compared with the cutting speed, the depth of cut definitely has a conspicuous effect on the damage. For an orthogonal cutting process of UD-CFRP, cutting parameters with a low level of the depth of cut and a high level of the cutting speed are suggested.
- Two damage factors can quantitatively characterize the cutting induced damage by using the experimental and numerical method. Especially, Fdep is considered to be the valid and efficient factor in fiber orientation from 0° to 90° and Fa is advised to be used in the range of fiber orientation of more than 135°.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zenia, S.; Ben Ayed, L.; Nouari, M. Numerical prediction of the chip formation process and induced damage during the machining of carbon/epoxy composites. Int. J. Mech. Sci. 2015, 90, 89–101. [Google Scholar] [CrossRef]
- An, Q.L.; Ming, W.W.; Cai, X.J. Study on the cutting mechanics characteristics of high-strength UD-CFRP laminates based on orthogonal cutting method. Compos. Struct. 2015, 131, 374–383. [Google Scholar] [CrossRef]
- Rahman, M.; Ramakrishna, S.; Prakash, J.R.S. Machinability study of carbon fiber reinforced composite. J. Mater. Process. Technol. 1999, 89, 292–297. [Google Scholar] [CrossRef]
- Bencardino, F.; Condello, A.; Ombres, L. Numerical and analytical modeling of concrete beams with steel, FRP and hybrid FRP-steel reinforcements. Compos. Struct. 2016, 140, 53–65. [Google Scholar] [CrossRef]
- Phadnis, V.A.; Makhdum, F.; Roy, A. Drilling in carbon/epoxy composites: Experimental investigations and finite element implementation. Compos. Part A Appl. Sci. 2013, 47, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.H.; Ramulu, M.; Arola, D. Orthogonal cutting mechanisms of graphite/epoxy composite. Part I: Unidirectional laminate. Int. J. Mach. Tools Manuf. 1995, 35, 1623–1638. [Google Scholar] [CrossRef]
- Gao, C.; Xiao, J.; Xu, J. Factor analysis of machining parameters of fiber-reinforced polymer composites based on finite element simulation with experimental investigation. Int. J. Adv. Manuf. Technol. 2016, 83, 1113–1125. [Google Scholar] [CrossRef]
- Agarwal, H.; Amaranath, A.; Jamthe, Y. An investigation of cutting mechanisms and strain fields during orthogonal cutting in CFRPs. Mach. Sci. Technol. 2015, 19, 416–439. [Google Scholar] [CrossRef]
- Koplev, A.; Lystrup, A.; Vorm, T. The cutting process, chips and cutting forces in machining CFRP. Composites 1983, 14, 371–376. [Google Scholar] [CrossRef]
- Bhatnagar, N.; Ramakrishnan, N.; Naik, N.K. On the machining of fiber reinforced plastic (FRP) composite laminates. Int. J. Mach. Tools Manuf. 1995, 35, 701–716. [Google Scholar] [CrossRef]
- Wang, X.M.; Zhang, L.C. An experimental investigation into the orthogonal cutting of unidirectional fibre reinforced plastics. Int. J. Mach. Tools Manuf. 2003, 43, 1015–1022. [Google Scholar] [CrossRef]
- Arola, D.; Ramulu, M.; Wang, D.H. Chip formation in orthogonal trimming of graphite/epoxy composite. Compos. Part A Appl. Sci. 1996, 27, 121–133. [Google Scholar] [CrossRef]
- Rajasekaran, T.; Palanikumar, K.; Arunachalam, S. Investigation on the turning parameters for surface roughness using Taguchi analysis. Procedia Eng. 2013, 51, 781–790. [Google Scholar] [CrossRef]
- Rajasekaran, T.; Palanikumar, K.; Vinayagam, B.K. Turning CFRP composites with ceramic tool for surface roughness analysis. Procedia Eng. 2012, 38, 2922–2929. [Google Scholar] [CrossRef]
- Palanikumar, K.; Mata, F.; Davim, J.P. Analysis of surface roughness parameters in turning of FRP tubes by PCD tool. J. Mater. Process. Technol. 2008, 204, 469–474. [Google Scholar] [CrossRef]
- Arola, D.; Ramulu, M. Orthogonal cutting of fiber-reinforced composites: A finite element analysis. Int. J. Mech. Sci. 1997, 39, 597–613. [Google Scholar] [CrossRef]
- Mahdi, M.; Zhang, L.C. A finite element model for the orthogonal cutting of fiber-reinforced composite materials. J. Mater. Process. Technol. 2001, 113, 373–377. [Google Scholar] [CrossRef]
- Nayak, D.; Bhatnagar, N.; Mahajan, P. Machining studies of UD-FRP composites Part 2: Finite element analysis. Mach. Sci. Technol. 2005, 9, 503–528. [Google Scholar] [CrossRef]
- Venu Gopala Rao, G.; Mahajan, P.; Bhatnagar, N. Micro-mechanical modeling of machining of FRP composites-cutting force analysis. Compos. Sci. Technol. 2007, 67, 579–593. [Google Scholar]
- Lasri, L.; Nouari, M.; El Mansori, M. Modelling of chip separation in machining unidirectional FRP composites by stiffness degradation concept. Compos. Sci. Technol. 2009, 69, 684–692. [Google Scholar] [CrossRef]
- Soldani, X.; Santiuste, C.; Muñoz-Sánchez, A. Influence of tool geometry and numerical parameters when modeling orthogonal cutting of LFRP composites. Compos. Part A Appl. Sci. 2011, 42, 1205–1216. [Google Scholar] [Green Version]
- Santiuste, C.; Miguélez, H.; Soldani, X. Out-of-plane failure mechanisms in LFRP composite cutting. Compos. Struct. 2011, 93, 2706–2713. [Google Scholar] [CrossRef] [Green Version]
- Lissek, F.; Tegas, J.; Kaufeld, M. Damage quantification for the machining of CFRP: An introduction about characteristic values considering shape and orientation of drilling-induced delamination. Procedia Eng. 2016, 149, 2–16. [Google Scholar] [CrossRef]
- Latourte, F.; Grégoire, D.; Zenkert, D. Failure mechanisms in composite panels subjected to underwater impulsive loads. J. Mech. Phys. Solids 2011, 59, 1623–1646. [Google Scholar] [CrossRef]
- Khan, S.U.; Munir, A.; Hussain, R. Fatigue damage behaviors of carbon fiber-reinforced epoxy composites containing nanoclay. Compos. Sci. Technol. 2010, 70, 2077–2085. [Google Scholar] [CrossRef]
- Iqbal, K.; Khan, S.; Munir, A. Impact damage resistance of CFRP with nanoclay-filled epoxy matrix. Compos. Sci. Technol. 2009, 69, 1949–1957. [Google Scholar] [CrossRef]
- Gao, S.; Kim, J. Scanning acoustic microscopy as a tool for quantitative characterization of damage in CFRPs. Compos. Sci. Technol. 1999, 59, 345–354. [Google Scholar] [CrossRef]
- Gaugel, S.; Sripathy, P.; Haeger, A. A comparative study on tool wear and laminate damage in drilling of carbon-fiber reinforced polymers (CFRP). Compos. Struct. 2016, 155, 173–183. [Google Scholar] [CrossRef]
- Bhatnagar, N.; Nayak, D.; Singh, I. Determination of machining-induced damage characteristics of fiber reinforced plastic composite laminates. Mater. Manuf. Process. 2004, 19, 1009–1023. [Google Scholar] [CrossRef]
- MATLAB, version 8.3; multi-paradigm numerical computing environment and fourth-generation programming language; Mathworks, Inc.: Natick, MA, USA, 2014.
- Chang, F.K.; Chang, K.Y. A progressive damage model for laminated composites containing stress concentrations. J. Compos. Mater. 1987, 21, 834–855. [Google Scholar] [CrossRef]
- ABAQUS, version 6.10; software for finite element analysis and computer-aided engineering; Simulia: Johnston, RI, USA, 2010.
- Klinkova, O.; Rech, J.; Drapier, S. Characterization of friction properties at the workmaterial/cutting tool interface during the machining of randomly structured carbon fibers reinforced polymer with carbide tools under dry conditions. Tribol. Int. 2011, 44, 2050–2058. [Google Scholar] [CrossRef]
- Hou, J.P.; Petrinic, N.; Ruiz, C. Prediction of impact damage in composite plates. Compos. Sci. Technol. 2000, 60, 273–281. [Google Scholar] [CrossRef]
- Puck, A.; Schürmann, H. Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 1998, 58, 1045–1067. [Google Scholar] [CrossRef]
- Hashin, Z. Failure criteria for unidirectional fiber composites. J. Appl. Mech. 1980, 47, 329–334. [Google Scholar] [CrossRef]
- Hashin, Z.; Rotem, A. A fatigue failure criterion for fiber reinforced materials. J. Compos. Mater. 1973, 7, 448–464. [Google Scholar] [CrossRef]
- Tsai, S.W.; Wu, E.M. A general theory of strength for anisotropic materials. J. Compos. Mater. 1971, 5, 58–80. [Google Scholar] [CrossRef]
- Puck, A.; Mannigel, M. Physically based non-linear stress-strain relations for the inter-fibre fracture analysis of FRP laminates. Compos. Sci. Technol. 2007, 67, 1955–1964. [Google Scholar] [CrossRef]
- Puck, A.; Schürmann, H. Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 2002, 62, 1633–1662. [Google Scholar] [CrossRef]
- Puck, A.; Kopp, J.; Knops, M. Guidelines for the determination of the parameters in Puck’s action plane strength criterion. Compos. Sci. Technol. 2002, 62, 371–378. [Google Scholar] [CrossRef]
- Iliescu, D.; Gehin, D.; Iordanoff, I. A discrete element method for the simulation of CFRP cutting. Compos. Sci. Technol. 2010, 70, 73–80. [Google Scholar] [CrossRef]
Mechanical Properties | Magnitudes | |
---|---|---|
Young’s modulus in 1–direction | E11 | 138.0 GPa |
Young’s modulus in 2–direction | E22 | 10.16 GPa |
Young’s modulus in 3–direction | E33 | 10.16 GPa |
Poisson’s ratio in 1–2 plane | ν12 | 0.28 |
Poisson’s ratio in 1–3 plane | ν13 | 0.28 |
Poisson’s ratio in 2–3 plane | ν23 | 0.30 |
Shear modulus in 1–2 plane | G12 | 5.86 GPa |
Shear modulus in 1–3 plane | G13 | 5.86 GPa |
Shear modulus in 2–3 plane | G23 | 4.79 GPa |
Density | ρ | 1540.0 kg/m3 |
Ultimate tension stress in 1–direction | XT | 1548 MPa |
Ultimate compression stress in 1–direction | XC | 856 MPa |
Ultimate tension stress in 2–direction | YT | 37.5 MPa |
Ultimate compression stress in 2–direction | YC | 218 MPa |
Ultimate shear stress in 1–2 plane | S12 | 79 MPa |
Ultimate shear stress in 1–3 plane | S13 | 79 MPa |
Ultimate shear stress in 2–3 plane | S23 | 60.5 MPa |
Parameters | Units | Range |
---|---|---|
Cutting speed, Vc | r/min | 160, 200, 250, 320, 400, 450, 500, 560 |
m/min | 88.4, 110.5, 138.2, 176.8, 221.1, 248.7, 276.3, 309.5 | |
Nominal depth of cut, Dnom | mm | 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 |
Category | Damage Factors | Equation | |
---|---|---|---|
One-dimensional | Fdep | (Dmax + Dnom)/Dnom | (1) |
Two-dimensional | Fa | Acut/Anom | (2) |
Fiber Orientation Angle (°) | Cutting Force, Fc (N) | Thrust Force, Ft (N) | 1-D Damage Factor, Fdep | 2-D Damage Factor, Fa |
---|---|---|---|---|
0 | 15.25 | 20.40 | 1.06 | 1.08 |
45 | 35.90 | 28.89 | 1.23 | 1.20 |
90 | 48.45 | 12.77 | 1.003 | 1.001 |
135 | 22.83 | 30.9 | 1.33 | 1.99 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; He, X.; Xu, Z.; Jiao, W.; Yang, F.; Jiang, L.; Li, L.; Liu, W.; Wang, R. Study on Damage Evaluation and Machinability of UD-CFRP for the Orthogonal Cutting Operation Using Scanning Acoustic Microscopy and the Finite Element Method. Materials 2017, 10, 204. https://doi.org/10.3390/ma10020204
Wang D, He X, Xu Z, Jiao W, Yang F, Jiang L, Li L, Liu W, Wang R. Study on Damage Evaluation and Machinability of UD-CFRP for the Orthogonal Cutting Operation Using Scanning Acoustic Microscopy and the Finite Element Method. Materials. 2017; 10(2):204. https://doi.org/10.3390/ma10020204
Chicago/Turabian StyleWang, Dongyao, Xiaodong He, Zhonghai Xu, Weicheng Jiao, Fan Yang, Long Jiang, Linlin Li, Wenbo Liu, and Rongguo Wang. 2017. "Study on Damage Evaluation and Machinability of UD-CFRP for the Orthogonal Cutting Operation Using Scanning Acoustic Microscopy and the Finite Element Method" Materials 10, no. 2: 204. https://doi.org/10.3390/ma10020204
APA StyleWang, D., He, X., Xu, Z., Jiao, W., Yang, F., Jiang, L., Li, L., Liu, W., & Wang, R. (2017). Study on Damage Evaluation and Machinability of UD-CFRP for the Orthogonal Cutting Operation Using Scanning Acoustic Microscopy and the Finite Element Method. Materials, 10(2), 204. https://doi.org/10.3390/ma10020204