Next Article in Journal
Au3+/Au0 Supported on Chromium(III) Terephthalate Metal Organic Framework (MIL-101) as an Efficient Heterogeneous Catalystfor Three-Component Coupling Synthesis of Propargylamines
Previous Article in Journal
Investigations on the Role of N2:(N2 + CH4) Ratio on the Growth of Hydrophobic Nanostructured Hydrogenated Carbon Nitride Thin Films by Plasma Enhanced Chemical Vapor Deposition at Low Temperature
Article Menu
Issue 2 (February) cover image

Export Article

Open AccessArticle
Materials 2017, 10(2), 100;

Properties of Residue from Olive Oil Extraction as a Raw Material for Sustainable Construction Materials. Part I: Physical Properties

Department of Chemical, Environmental and Material Engineering. Higher Polytechnic School of Linares, University of Jaen, Scientific and Technological Campus of Linares, 23700 Linares (Jaén), Spain
Author to whom correspondence should be addressed.
Academic Editor: Jorge de Brito
Received: 7 December 2016 / Revised: 17 January 2017 / Accepted: 18 January 2017 / Published: 25 January 2017
Full-Text   |   PDF [3090 KB, uploaded 25 January 2017]   |  


Action on climate, the environment, and the efficient use of raw materials and resources are important challenges facing our society. Against this backdrop, the construction industry must adapt to new trends and environmentally sustainable construction systems, thus requiring lines of research aimed at keeping energy consumption in new buildings as low as possible. One of the main goals of this research is to efficiently contribute to reducing the amount of residue from olive oil extraction using a two-phase method. This can be achieved by producing alternative structural materials to be used in the construction industry by means of a circular economy. The technical feasibility of adding said residue to ceramic paste was proven by analyzing the changes produced in the physical properties of the paste, which were then compared to the properties of the reference materials manufactured with clay without residue. Results obtained show that the heating value of wet pomace can contribute to the thermal needs of the sintering process, contributing 30% of energy in pieces containing 3% of said material. Likewise, adding larger amounts of wet pomace to the clay body causes a significant decrease in bulk density values. View Full-Text
Keywords: wet pomace; sustainable construction materials; circular economy wet pomace; sustainable construction materials; circular economy

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Díaz-García, A.; Martínez-García, C.; Cotes-Palomino, T. Properties of Residue from Olive Oil Extraction as a Raw Material for Sustainable Construction Materials. Part I: Physical Properties. Materials 2017, 10, 100.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Materials EISSN 1996-1944 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top