MWCNT Coated Free-Standing Carbon Fiber Fabric for Enhanced Performance in EMI Shielding with a Higher Absolute EMI SE
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Characterization
2.1.1. Scan Electron Microscopic Analysis of Morphology
2.1.2. Raman Spectroscopic Analysis for Structure of Carbon Based Material
2.1.3. X-ray Photoelectron Spectroscopy Analysis
2.2. Tensile Strength of MWCNT Coated C/C Composites
2.3. Electromagnetic Shielding Effectiveness of MWCNT Coated Carbon Fiber Fabric
2.4. Thermal Stability and Thermogravimetric Analysis of the C/C Composites
2.5. Electrical Conductivity
3. Materials and Methods
3.1. Materials
3.2. Oxidation of Multi-Walled Carbon Nanotubes
3.3. Preparation of MWCNT Oxide Dispersion
3.4. Preparation of GN and CNT Coated C/C Composite
3.5. Characterization
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Das, N.; Chaki, T.; Khastgir, D.; Chakraborty, A. Electromagnetic Interference Shielding Effectiveness of Ethylene Vinyl Acetate Based Conductive Composites. J. Appl. Polym. Sci. 2001, 80, 1601–1608. [Google Scholar] [CrossRef]
- Lai, K.; Sun, R.; Chen, M.; Wu, H.; Zha, A. Electromagnetic Shielding Effectiveness of Fabrics with Metallized Polyester Filaments. Text. Res. J. 2007, 77, 242–246. [Google Scholar] [CrossRef]
- Djelic, N.; Soldatovic, B.; Andjelkovik, M.; Cvetkovic, D. In vitro cytogenetic analysis of the effects of oxytocin on human peripheral blood lymphocytes. Mutat. Res. Fundam. Mol. Mech. Mutagen. 1996, 356, 265–268. [Google Scholar] [CrossRef]
- Yang, Y.; Gupta, M.C.; Dudley, K.L.; Lawrence, R.W. Novel carbon nanotube-Polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 2005, 5, 2131–2134. [Google Scholar] [CrossRef] [PubMed]
- Shui, X.; Chung, D.D.L. Magnetic properties of nickel filament polymer-matrix composites. J. Electron. Mater. 1996, 25, 930–934. [Google Scholar] [CrossRef]
- Wang, L.L.; Tay, B.K.; See, K.Y.; Sun, Z.; Tan, L.K.; Lua, D. Electromagnetic interference shielding effectiveness of carbon-based materials prepared by screen printing. Carbon N. Y. 2009, 47, 1905–1910. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, C.; Ma, C.; Ren, W.; Cheng, H.M. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 2013, 25, 1296–1300. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.W.; Lee, S.E.; Jeong, Y.G. Carbon nanotube/cellulose papers with high performance in electric heating and electromagnetic interference shielding. Compos. Sci. Technol. 2016, 131, 77–87. [Google Scholar] [CrossRef]
- Gohardani, O.; Elola, M.C.; Elizetxea, C. Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences. Prog. Aerosp. Sci. 2014, 70, 42–68. [Google Scholar] [CrossRef]
- Chung, D.D.L. Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon N. Y. 2012, 50, 3342–3353. [Google Scholar] [CrossRef]
- Han, E.G.; Kim, E.A.; Oh, K.W. Electromagnetic interference shielding effectiveness of electroless Cu-plated PET fabrics. Synth. Met. 2001, 123, 469–476. [Google Scholar] [CrossRef]
- Jiang, S.X.; Guo, R.H. Electromagnetic shielding and corrosion resistance of electroless Ni-P/Cu-Ni multilayer plated polyester fabric. Surf. Coat. Technol. 2011, 205, 4274–4279. [Google Scholar] [CrossRef]
- Chung, D.D.L. Materials for Electromagnetic Interference Shielding. J. Mater. Eng. Perform. 2000, 9, 350–354. [Google Scholar] [CrossRef]
- Chung, D.D.L. Electromagnetic interference shielding effectiveness of carbon materials. Carbon N. Y. 2001, 39, 279–285. [Google Scholar] [CrossRef]
- Li, N.; Huang, Y.; Du, F.; He, X.; Lin, X.; Gao, H.; Ma, Y.; Li, F.; Chen, Y.; Eklund, P.C. Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites. Nano Lett. 2006, 6, 1141–1145. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Chugh, R.; Biller, B.; Hoi, Y.; Chung, D. Electronic applications of flexible graphite. J. Electron. Mater. 2002, 31, 535–544. [Google Scholar] [CrossRef]
- Evanoff, K.; Benson, J.; Schauer, M.; Kovalenko, I.; Lashmore, D.; Ready, W.J.; Yushin, G. Ultra-Strong Silicon-Coated Carbon Nanotube Nonwoven Fabric as Multifunctional Lithium Ion Battery Anodes. ACS Nano 2012, 6, 9837–9845. [Google Scholar] [CrossRef] [PubMed]
- Mcquade, A.; Arons, G. Reinforced Carbon Fabrics. U.S. Patent 3850785 A, 21 October 1973. [Google Scholar]
- Song, Q.; Li, K.Z.; Li, H.L.; Li, H.J.; Ren, C. Grafting straight carbon nanotubes radially onto carbon fibers and their effect on the mechanical properties of carbon/carbon composites. Carbon N. Y. 2012, 50, 3949–3952. [Google Scholar] [CrossRef]
- Liu, X.; Yin, X.; Kong, L.; Li, Q.; Liu, Y.; Duan, W.; Zhang, L.; Cheng, L. Fabrication and electromagnetic interference shielding effectiveness of carbon nanotube reinforced carbon fiber/pyrolytic carbon composites. Carbon N. Y. 2014, 68, 501–510. [Google Scholar] [CrossRef]
- Hou, X.; Cheng, W.; Chen, N.; Zhou, H.Y. Preparation of a high performance carbon/carbon composite throat insert woven with axial carbon rods. New Carbon Mater. 2013, 28, 355–362. [Google Scholar] [CrossRef]
- Kim, C.; Park, S.H.; Cho, J.I.; Lee, D.Y.; Park, T.J.; Lee, W.J.; Yang, K.S. Raman spectroscopic evaluation of polyacrylonitrile-based carbon nanofibers prepared by electrospinning. J. Raman Spectrosc. 2004, 35, 928–933. [Google Scholar] [CrossRef]
- Wang, Y.; Alsmeyer, D.C.; McCreery, R.L. Raman spectroscopy of carbon materials: Structural basis of observed spectra. Chem. Mater. 1990, 2, 557–563. [Google Scholar] [CrossRef]
- Washer, G.; Blum, F. Raman Spectroscopy for the Nondestructive Testing of Carbon Fiber. Res. Lett. Mater. Sci. 2008, 2008. [Google Scholar] [CrossRef]
- Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsis, I.; Galiotis, C. Chemical oxidation of multiwalled carbon nanotubes. Carbon N. Y. 2008, 46, 833–840. [Google Scholar] [CrossRef]
- Kim, K.J.; Kim, J.; Yu, W.R.; Youk, J.H.; Lee, J. Improved tensile strength of carbon fibers undergoing catalytic growth of carbon nanotubes on their surface. Carbon N. Y. 2013, 54, 258–267. [Google Scholar] [CrossRef]
- Zhou, Y.; Pervin, F.; Jeelani, S.; Mallick, P.K. Improvement in mechanical properties of carbon fabric–epoxy composite using carbon nanofibers. J. Mater. Process. Technol. 2008, 198, 445–453. [Google Scholar] [CrossRef]
- IEEE Standards Association. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications; Amendment 4: Enhancements for Very High Throughput for Operation in Bands below 6 GHz; IEEE Standards Association: Piscataway, NJ, USA, 2013. [Google Scholar]
- Zhang, H.B.; Yan, Q.; Zheng, W.G.; He, Z.; Yu, Z.Z. Tough Graphene-Polymer Microcellular Foams for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2011, 3, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Chen, L.; Huang, Y.; Li, J.; Wu, X.; Li, X.; Jiao, Y. Wettability of carbon fibers modified by acrylic acid and interface properties of carbon fiber/epoxy. Eur. Polym. J. 2008, 44, 494–503. [Google Scholar] [CrossRef]
- Abuilaiwi, F.A.; Laoui, T.; Al-harthi, M.; Atieh, M.A. Modification and Functionalization of Multiwalled Carbon Nanotube (MWCNT) Via Fischer Esterification. Arab. J. Sci. Eng. 2010, 35, 37–48. [Google Scholar]
- Kim, Y.J.; Shin, T.S.; Choi, H.D.; Kwon, J.H.; Chung, Y.C.; Yoon, H.G. Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon N. Y. 2005, 43, 23–30. [Google Scholar] [CrossRef]
- Arjmand, M.; Chizari, K.; Krause, B.; Pötschke, P.; Sundararaj, U. Effect of synthesis catalyst on structure of nitrogen-doped carbon nanotubes and electrical conductivity and electromagnetic interference shielding of their polymeric nanocomposites. Carbon N. Y. 2016, 98, 358–372. [Google Scholar] [CrossRef]
- Du, F.; Fischer, J.E.; Winey, K.I. Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites. Phys. Rev. B 2005, 72, 121404. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pothupitiya Gamage, S.J.; Yang, K.; Braveenth, R.; Raagulan, K.; Kim, H.S.; Lee, Y.S.; Yang, C.-M.; Moon, J.J.; Chai, K.Y. MWCNT Coated Free-Standing Carbon Fiber Fabric for Enhanced Performance in EMI Shielding with a Higher Absolute EMI SE. Materials 2017, 10, 1350. https://doi.org/10.3390/ma10121350
Pothupitiya Gamage SJ, Yang K, Braveenth R, Raagulan K, Kim HS, Lee YS, Yang C-M, Moon JJ, Chai KY. MWCNT Coated Free-Standing Carbon Fiber Fabric for Enhanced Performance in EMI Shielding with a Higher Absolute EMI SE. Materials. 2017; 10(12):1350. https://doi.org/10.3390/ma10121350
Chicago/Turabian StylePothupitiya Gamage, Sudesh Jayashantha, Kihun Yang, Ramanaskanda Braveenth, Kanthasamy Raagulan, Hyun Suk Kim, Yun Seon Lee, Cheol-Min Yang, Jai Jung Moon, and Kyu Yun Chai. 2017. "MWCNT Coated Free-Standing Carbon Fiber Fabric for Enhanced Performance in EMI Shielding with a Higher Absolute EMI SE" Materials 10, no. 12: 1350. https://doi.org/10.3390/ma10121350
APA StylePothupitiya Gamage, S. J., Yang, K., Braveenth, R., Raagulan, K., Kim, H. S., Lee, Y. S., Yang, C.-M., Moon, J. J., & Chai, K. Y. (2017). MWCNT Coated Free-Standing Carbon Fiber Fabric for Enhanced Performance in EMI Shielding with a Higher Absolute EMI SE. Materials, 10(12), 1350. https://doi.org/10.3390/ma10121350