Chemically Modified Polyvinyl Chloride for Removal of Thionine Dye (Lauth’s Violet)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Adsorbent Characterization
2.2. Adsorption Kinetics
2.2.1. Effects of pH on Adsorption
2.2.2. Adsorbent Mass
2.2.3. Kinetics Models
2.3. Adsorption Isotherm
3. Materials and Methods
3.1. Dehydrochlorination of the Polyvinyl Chloride Resin
3.2. Sulfuric Acid Treatment of Polyvinyl Chloride Resin-Partially Dehydrochlorinated (PVCD)
3.3. Characterization
3.4. Solutions and Reagents
3.5. Batch Adsorption Procedure
3.6. Kinetic and Equilibrium Models
3.7. Statistical Evolution of Kinetic and Isothermal Parameters
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Notations
aRP | Redlich–Peterson constant (mg·dm−3)g−1 |
C | constant related with the thickness of the boundary layer (mg·g−1) |
Cf | dye concentration at the end of the adsorption (mg·dm−3) |
Ce | dye concentration at equilibrium (mg·dm−3) |
C0 | initial dye concentration put in contact with the adsorbent (mg·dm−3) |
g | dimensionless exponent of Redlich–Peterson equation |
h | the initial sorption rate (mg·g−1·h−1) of the pseudo-second order equation |
k1 | pseudo-first order rate constant (h−1) |
KF | the Freundlich constant related to adsorption capacity ([mg·g−1(mg·dm−3)−1/nf]) |
kid | intraparticle diffusion rate constant (mg·g−1·h−1/2) |
KL | Langmuir affinity constant (dm3·mg−1) |
KRP | Redlich–Peterson constant (dm3·g−1) |
KS | the Sips constant related to the affinity constant (mg·dm−3)−1/ns |
k2 | the pseudo-second order rate constant (g·mg−1·h−1) |
m | mass of adsorbent (g) |
nF | dimensionless exponent of the Freundlich equation |
nS | dimensionless exponent of the Sips equation |
q | amount of the dye adsorbed by the adsorbent (mg·g−1) |
qe | amount of adsorbate adsorbed at the equilibrium (mg·g−1) |
qt | amount of adsorbate adsorbed at time t (mg·g−1) |
qe1 | amount of adsorbate adsorbed at the equilibrium (mg·g−1) to the pseudo-first order model |
qe2 | amount of adsorbate adsorbed at the equilibrium (mg·g−1) to the pseudo-second order model |
Qmax | the maximum adsorption capacity of the adsorbent (mg·g−1) |
V | volume of dye put in contact with the adsorbent (dm3) |
RL | the separation factor of the Langmuir (mg·dm−3) |
References
- Keane, M.A. Catalytic conversion of waste plastics: focus on waste PVC. J. Chem. Technol. Biotechnol. 2007, 82, 787–795. [Google Scholar] [CrossRef]
- Braun, D. Poly(vinyl chloride) on the way from the 19th century to the 21st century. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 578–586. [Google Scholar] [CrossRef]
- Kameda, T.; Ono, M.; Grause, G.; Mizoguchi, T.; Yoshioka, T. Ball mill-assisted dechlorination of flexible and rigid poly(vinyl chloride) in NaOH/EG solution. Ind. Eng. Chem. Res. 2008, 47, 8619–8624. [Google Scholar] [CrossRef]
- Starnes, W.H.; Ge, X. Mechanism of autocatalysis in the thermal dehydrochlorination of poly(vinyl chloride). Macromolecules 2004, 37, 352–359. [Google Scholar] [CrossRef]
- Folarin, O.M.; Sadiku, E.R. Thermal stabilizers for poly(vinyl chloride): A review. Int. J. Phys. Sci. 2011, 18, 4323–4330. [Google Scholar] [CrossRef]
- Fatta-Kassinos, D.; Dionysiou, D.; Kümmerer, K. (Eds.) Advanced Treatment Technologies for Urban Wastewater Reuse; The Handbook of Environmental Chemistry Series 45; Springer: Basel, Switzerland, 2016; p. 305. [Google Scholar]
- Wu, Y.; Zhou, Q.; Zhao, T.; Deng, M.; Zhang, J.; Wang, Y. Poly(ethylene glycol) enhanced dehydrochlorination of poly(vinyl chloride). J. Hazard. Mater. 2009, 163, 1408–1411. [Google Scholar] [CrossRef] [PubMed]
- De A.M.M.S. Machado, H.M.; Rodrigues Filho, G.; Assunção, R.M.N.; Soares, H.M.; Cangani, A.P.; Cerqueira, D.A.; Meireles, C.S. Chemical recycling of poly(vinyl chloride): Application of partially dehydrochlorinated poly(vinyl chloride) for producing a chemically modified polymer. J. Appl. Polym. Sci. 2009, 115, 1474–1479. [Google Scholar] [CrossRef]
- Guo, L.; Shi, G.; Liang, Y. High-quality polyene films prepared by poly(ethylene glycol)s catalyzed dehydrochlorination of poly(vinyl chloride) with potassium hydroxide. Eur. Polym. J. 1999, 35, 215–220. [Google Scholar] [CrossRef]
- Xu, L.; Hian, K.L. Sulfonated polyvinyl chloride fibers for cation-exchange microextraction. J. Chromatogr. A 2009, 1216, 6549–6553. [Google Scholar] [CrossRef] [PubMed]
- Asadinezhad, A.; Lehocký, M.; Sáha, P.; Mozetič, M. Recent Progress in Surface Modification of Polyvinyl Chloride. Materials 2012, 5, 2937–2959. [Google Scholar] [CrossRef]
- Gupta, V.; Kumar, A.N.; Shilpi, A. Performance evaluation and application of oxygen enriched waste rubber tire adsorbent for the removal of hazardous aniline derivatives from waste water. Chem. Eng. J. 2012, 203, 447–457. [Google Scholar] [CrossRef]
- Pereira, M.F.R.; Soares, S.F.; Orfao, J.J.M.; Figueiredo, J.L. Adsorption of dyes on activated carbons: Influence of surface chemical groups. Carbon 2003, 41, 811–821. [Google Scholar] [CrossRef]
- Nayak, A.; Bhushan, B.; Gupta, V.; Sharma, P. Chemically activated carbon from lignocellulosic wastes for heavy metal wastewater remediation: Effect of activation conditions. J. Colloid Interface Sci. 2017, 493, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Jain, R.; Shrivastava, M.; Nayak, A. Equilibrium and thermodynamic studies on the adsorption of the dye tartrazine onto waste “coconut husks” carbon and activated carbon. J. Chem. Eng. Data 2010, 55, 5083–5090. [Google Scholar] [CrossRef]
- Gupta, V.K.; Nayak, A.; Bhushan, B.; Agarwal, S. A critical analysis on the efficiency of activated carbons from low-cost precursors for heavy metals remediation. Crit. Rev. Environ. Sci. Technol. 2015, 45, 613–668. [Google Scholar] [CrossRef]
- Pennafort Júnior, L.C.G.; Silva, F.R.; Deus, E.P. Avaliação e caracterização de tubos fabricados com PVC reciclado. Polímeros 2013, 23, 547–551. [Google Scholar] [CrossRef]
- Zundel, G. Hydration structure and intermolecular interaction in polyelectrolytes. Angew. Chem. Int. Ed. Engl. 1969, 8, 499–509. [Google Scholar] [CrossRef]
- Kameda, T.; Ono, M.; Grause, G.; Mizoguchi, T.; Yoshioka, T. Chemical modification of poly(vinyl chloride) by nucleophilic substitution. Polym. Degrad. Stab. 2009, 94, 107–112. [Google Scholar] [CrossRef]
- Silva, A.C.G.; Assunção, R.M.N.; Vieira, J.G.; Rodrigues Filho, G.; Ribeiro, S.D. Reciclagem do policloreto de vinila (PVC) através da modificação química, visando à aplicação em processos de separação. In Proceedings of the Congresso Brasileiro de Química, Recife, Brazil, 14–18 October 2012; Brazilian Chemical Association: Recife, Brazil, 2012. [Google Scholar]
- Song, D.; Xu, J.; Fu, Y.; Xu, L.; Shan, B. Polysulfone/sulfonated polysulfone alloy membranes with an improved performance in processing mariculture wastewater. Chem. Eng. J. 2016, 304, 882–889. [Google Scholar] [CrossRef]
- Xing, P.; Robertson, G.P.; Guiver, M.D.; Mikhailenko, S.D.; Wang, K.; Kaliaguine, S. Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes. J. Membr. Sci. 2004, 229, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, P.; Park, J.; Yang, T.; Lee, W.; Kim, C. Sulfonated poly(ether ether ketone)-based composite membrane for polymer electrolyte membrane fuel cells. J. Power Sources 2006, 163, 2–8. [Google Scholar] [CrossRef]
- Silva, M.A.; Vieira, M.G.A.; Maçumoto, A.C.G.; Beppu, M.M. Polyvinylchloride (PVC) and natural rubber films plasticized with a natural polymeric plasticizer obtained through polyesterification of rice fatty acid. Polym. Test. 2011, 30, 478–484. [Google Scholar] [CrossRef]
- Han, S.; Liu, K.; Hu, L.; Teng, F.; Yu, P.; Zhu, Y. Superior Adsorption and Regenerable Dye Adsorbent Based on Flower-Like Molybdenum Disulfide Nanostructure. Sci. Rep. 2017, 7, 43599–43609. [Google Scholar] [CrossRef] [PubMed]
- Hamidzadeh, S.; Torabbeigi, M.; Shahtaheri, S.J. Removal of crystal violet from water by magnetically modified activated carbon and nanomagnetic iron oxide. J. Environ. Health Sci. Eng. 2015, 13, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Naushada, M.; ALOthmana, Z.A.; Awualb, M.R.; Alfadulc, S.M.; Ahamada, T. Adsorption of rose Bengal dye from aqueous solution by amberlite Ira-938 resin: Kinetics, isotherms, and thermodynamic studies. Desalin. Water Treat. 2015, 57, 13527–13533. [Google Scholar] [CrossRef]
- Royer, B.; Cardoso, N.F.; Lima, E.C.; Ruiz, V.S.O.; Macedo, T.R.; Airoldi, C. Organofunctionalized kenyaite for dye removal from aqueous solution. J. Colloid Interface Sci. 2009, 336, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.S.; Mckay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Cardoso, N.F.; Lima, E.C.; Pinto, I.S.; Amavisca, C.V.; Royer, B.; Pinto, R.B.; Alencar, W.S.; Pereira, S.F.P. Application of cupuassu shell as biosorbent for the removal of textile dyes from aqueous solution. J. Environ. Manag. 2010, 92, 1237–1247. [Google Scholar] [CrossRef] [PubMed]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Dezhampanah, H.; Mohammad-Khah, A.; Aghajani, N. Equilibrium and thermodynamic studies of thionine adsorption from aqueous solution onto rice husk. Eur. Chem. Bull. 2013, 2, 709–714. [Google Scholar] [CrossRef]
- Bulut, Y.; Aydın, H. A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 2006, 194, 259–267. [Google Scholar] [CrossRef]
- Guo, L.; Shi, G.; Liang, Y. Poly(ethylene glycol)s catalyzed homogeneous dehydrochlorination of poly(vinyl chloride) with potassium hydroxide. Polymer 2001, 42, 5581–5587. [Google Scholar] [CrossRef]
- Hidalgo, M.; Reinecke, H.; Mijangos, C. PVC containing hydroxyl groups. Polymer 1999, 40, 3525–3534. [Google Scholar] [CrossRef]
- Brandão, L.R.; Meireles, C.S.; Assunção, R.M.N.; Rodrigues Filho, G. Diffusion of Water through Poly(styrenesulfonate) membranes produced from the sulfonation of wasted PS plastic cups. Polym. Bull. 2005, 55, 269–275. [Google Scholar] [CrossRef]
- Lima, E. Determination of ytterbium in animal faeces by tungsten coil electrothermal atomic absorption spectrometry. Talanta 1998, 47, 613–623. [Google Scholar] [CrossRef]
- Tan, I.A.W.; Ahmad, A.L.; Hameed, B.H. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater. 2008, 154, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Oscik, J. Adsorption; Ellis Horwood Ltd.: Chichester, UK, 1982; ISBN 978–0470272183. [Google Scholar]
- Özer, A.; Akkaya, G.; Turabik, M. Biosorption of Acid Red 274 (AR 274) on Enteromorpha prolifera in a batch system. J. Hazard. Mater. 2005, 126, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 2000, 34, 735–742. [Google Scholar] [CrossRef]
- Ho, Y.S.; Mckay, G. The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can. J. Chem. Eng. 1998, 76, 822–827. [Google Scholar] [CrossRef]
- Sips, R. On the Structure of a Catalyst Surface. J. Chem. Phys. 1948, 16, 490–495. [Google Scholar] [CrossRef]
- Royer, B.; Cardoso, N.F.; Lima, E.C.; Macedo, T.R.; Airoldi, C. Sodic and Acidic Crystalline Lamellar Magadiite Adsorbents for the Removal of Methylene Blue from Aqueous Solutions: Kinetic and Equilibrium Studies. Sep. Sci. Technol. 2009, 45, 129–141. [Google Scholar] [CrossRef]
- Royer, B.; Cardoso, N.F.; Lima, E.C.; Macedo, T.R.; Airoldi, C. A useful organofunctionalized layered silicate for textile dye removal. J. Hazard. Mater. 2010, 181, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Redlich, O.; Peterson, D.L. A Useful Adsorption Isotherm. J. Phys. Chem. 1959, 63, 1024–1026. [Google Scholar] [CrossRef]
Samples | Percentage (%) (m/m) | Molar Ratio | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
% C | % Other Elements | % H | % S | % N | C | Other Elements | H | S | N | |
PVC | 34.75 | 59.68 | 4.68 | 0.76 | 0.13 | 2.89 | 1.68 | 4.64 | 0.024 | 0.0098 |
C/S * | OE/S | H/S | ||||||||
120.4 | 70 | 193.3 | 1 | |||||||
PVCDS | 58.91 | 30.09 | 5.84 | 5.02 | 0.14 | 4.90 | 0.849 | 5.73 | 0.158 | 0.0100 |
C/S * | OE/S | H/S | ||||||||
31.0 | 5.37 | 36.3 | 1 |
Samples | Surface Area | Specifc Pores Volume | Avegere Pores Diameter |
---|---|---|---|
σ (m2·g−1) | V (cm3·g−1) | d (nm) | |
PVC | 0.27 | 0.0021 | 6.59 |
PVCDS | 295.57 | 0.43 | 5.76 |
Kinetic Models | Equations |
---|---|
Pseudo-first order | |
Pseudo-second order | Initial rate of adsorption |
Intraparticle diffusion |
Experimental Date | Value |
log qe(exp) | 1.078 (±0.004) |
qe(exp) | 11.96 mg·g−1 (±0.12) |
Pseudo first-order | |
qe1 | 31.88 mg·g−1 |
k1 | 0.448 min−1 |
R2 | 0.9464 |
Pseudo second-order | |
qe2 | 11.74 mg·g−1 |
h | 15.49 mg·g−1·min−1 |
k2 | 0.1123 g·mg−1·min−1 |
R2 | 0.9994 |
Intraparticle diffusion | |
C | 9.95 mg·g−1 |
kid | 0.0696 mg·g−1·min1/2 |
R2 | 0.6523 |
Isotherm Models | Equations |
---|---|
Langmuir | |
Freundlich | |
Sips | |
Redlich-Peterson |
Model and Parameters | |||
---|---|---|---|
Langmuir | Freundlich | ||
Qmax (mg·g−1) | 370.9 | KF (mg·g−1(mg·dm−3)−1/nf) | 25.48 |
KL (dm3·mg−1) | 0.0590 | nF | 0.694 |
R2 | 0.9928 | R2 | 0.9908 |
Sips | Redlich-Peterson | ||
Qmax (mg·g−1) | 392.1 | aRP (mg·dm−3)−g | 0.24557 |
ns | 1.0389 | KRP (dm3·g−1) | 28.69 |
Ks ((mg·dm−3)−1/nf) | 0.0571 | G | 0.674 |
R2 | 0.9941 | R2 | 0.9924 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, H.M.A.M.M.S.; Silva, C.V.; Royer, B.; Rodrigues Filho, G.; Cerqueira, D.A.; Assunção, R.M.N. Chemically Modified Polyvinyl Chloride for Removal of Thionine Dye (Lauth’s Violet). Materials 2017, 10, 1298. https://doi.org/10.3390/ma10111298
Ali HMAMMS, Silva CV, Royer B, Rodrigues Filho G, Cerqueira DA, Assunção RMN. Chemically Modified Polyvinyl Chloride for Removal of Thionine Dye (Lauth’s Violet). Materials. 2017; 10(11):1298. https://doi.org/10.3390/ma10111298
Chicago/Turabian StyleAli, Helena Ma A. M. M. S., Cleuzilene V. Silva, Betina Royer, Guimes Rodrigues Filho, Daniel A. Cerqueira, and Rosana M. N. Assunção. 2017. "Chemically Modified Polyvinyl Chloride for Removal of Thionine Dye (Lauth’s Violet)" Materials 10, no. 11: 1298. https://doi.org/10.3390/ma10111298
APA StyleAli, H. M. A. M. M. S., Silva, C. V., Royer, B., Rodrigues Filho, G., Cerqueira, D. A., & Assunção, R. M. N. (2017). Chemically Modified Polyvinyl Chloride for Removal of Thionine Dye (Lauth’s Violet). Materials, 10(11), 1298. https://doi.org/10.3390/ma10111298