Surface Modification of Polymer Substrates for Biomedical Applications
Abstract
:1. Introduction
2. Laser Treatment
3. Ion Implantation
4. Plasma Treatment
5. Nanoparticle Grafting
6. Perspectives and Challenges
Acknowledgments
Conflicts of Interest
References
- Bacakova, L.; Filova, E.; Parizek, M.; Ruml, T.; Svorcik, V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011, 29, 739–767. [Google Scholar] [CrossRef] [PubMed]
- Brown, B.N.; Badylak, S.F. Expanded applications, shifting paradigms and an improved understanding of host–biomaterial interactions. Acta Biomater. 2013, 9, 4948–4955. [Google Scholar] [CrossRef] [PubMed]
- Kylian, O.; Choukourov, A.; Biderman, H. Nanostructured plasma polymers. Thin Solid Films 2013, 548, 1–17. [Google Scholar] [CrossRef]
- Velardi, L.; Lorusso, A.; Paladini, F.; Siciliano, M.V.; Giulio, M.; Raino, A.; Nassisi, V. Modification of polymer characteristics by laser and ion beam. Radiat. Eff. Defects Solids 2010, 165, 637–642. [Google Scholar] [CrossRef]
- Bacakova, L.; Mares, V.; Bottone, M.G.; Pellicciari, C.; Lisa, V.; Svorcik, V. Fluorine ion-implanted polystyrene improves growth and viability of vascular smooth muscle cells in culture. J. Biomed. Mater. Res. 2000, 49, 369–379. [Google Scholar] [CrossRef]
- Slepička, P.; Michaljaničová, I.; Slepičková Kasálková, N.; Kolská, Z.; Rimpelová, S.; Ruml, T.; Švorčík, V. Poly-l-lactic acid modified by etching and grafting with gold nanoparticles. J. Mater. Sci. 2013, 48, 5871–5879. [Google Scholar]
- Zong, M.M.; Gong, Y.K. Fabrication and biocompatibility of cell outer membrane mimetic surfaces. Chin. J. Polym. Sci. 2011, 29, 53–64. [Google Scholar] [CrossRef]
- Zarek, S.K.; Wang, Y.M. Single-molecule imaging of protein adsorption mechanisms to surfaces. Microsc. Res. Tech. 2011, 74, 682–687. [Google Scholar]
- Sharma, I.; Pattanayek, S.K. Effect of surface energy of solid surfaces on the micro- and macroscopic properties of adsorbed BSA and lysozyme. Biophys. Chem. 2017, 226, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Maitre, J.L.; Heisenberg, C.P. The role of adhesion energy in controlling cell–cell contacts. Curr. Opin. Cell Biol. 2011, 23, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Dhyani, V.; Singh, N. Controlling the Cell Adhesion Property of Silk Films by Graft Polymerization. Appl. Mater. Interfaces 2014, 6, 5005–5011. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, C.L.; Uchihara, Y.; Vlychou, M.; Grammatopoulos, G.; Athanasou, N.A. Development of malignant lymphoma after metal-on-metal hip replacement: a case report and review of the literature. Skelet. Radiol. 2017, 46, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Baino, F.; Montealegre, M.A.; Orlygsson, G.; Novarja, G.; Vitale-Brovarone, C. Bioactive glass coatings fabricated by laser cladding on ceramic acetabular cups: A proof-of-concept study. J. Mater. Sci. 2017, 52, 9115–9128. [Google Scholar] [CrossRef]
- Roy, I. Biodegradable Polymers. J. Chem. Technol. Biotechnol. 2010, 85, 731. [Google Scholar] [CrossRef]
- Bauer, S.; Schmuki, P.; von der Mark, K. Park, Engineering biocompatible implant surfaces Part I: Materials and surfaces. J. Prog. Mater. Sci. 2013, 58, 261–326. [Google Scholar] [CrossRef]
- Santos, E.R.; Burini, E.C.; Wang, S.H. UV-ozone generation from modified high intensity discharge mercury vapor lamps for treatment of indium tin oxide films. Ozone Sci. Eng. 2012, 34, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Gregoire, S.; Boudinet, M.; Pelascini, F.; Surma, F.; Detalle, V.; Holl, Y. Laser-induced breakdown spectroscopy for polymer identification. Anal. Bioanal. Chem. 2011, 400, 3331–3340. [Google Scholar] [CrossRef] [PubMed]
- Gour, N.; Ngo, K.X.; Vebert-Nardin, C. Anti-infectious surfaces achieved by polymer modification. Macromol. Mater. Eng. 2014, 299, 648–668. [Google Scholar] [CrossRef]
- Reznickova, A.; Kvitek, O.; Kolarova, K.; Smejkalova, Z.; Svorcik, V. Cell adhesion and proliferation on polytertafluoroethylene with plasma-metal and plasma-metal-carbon interfaces. Jpn. J. Appl. Phys. 2017, 56, 1–6. [Google Scholar] [CrossRef]
- Parizek, M.; Slepickova Kasalkova, N.; Bacakova, L.; Svindrych, Z.; Slepicka, P.; Bacakova, M.; Lisa, V.; Svorcik, V. Adhesion, Growth, and Maturation of Vascular Smooth Muscle Cells on Low-Density Polyethylene Grafted with Bioactive Substances. BioMed Res. Int. 2013, 371430. [Google Scholar] [CrossRef] [PubMed]
- Bacakova, L.; Filova, E.; Rypacek, F.; Svorcik, V.; Stary, V. Cell adhesion on artificial materials for tissue engineering. Physiol. Res. 2004, 53, 35–45. [Google Scholar]
- Anselme, K.; Ponche, A.; Bigerelle, M. Relative influence of surface topography and surface chemistry on cell response to bone implant materials—Part 2: Biological aspects. J. Eng. Med. 2010, 224, 1487–1507. [Google Scholar] [CrossRef] [PubMed]
- Bolle, M.; Lazare, S. Large scale excimer laser production of submicron periodic structures on polymer surfaces. Appl. Surf. Sci. 1993, 69, 31–37. [Google Scholar] [CrossRef]
- Borowiec, A.; Haugen, H.K. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl. Phys. Lett. 2003, 82, 4462–4464. [Google Scholar] [CrossRef]
- Granados, E.; Martinez-Calderon, M.; Gomez, M.; Rodriguez, A.; Olaizola, S.M. Photonic structures in diamond based on femtosecond UV laser induced periodic surface structuring (LIPSS). Opt. Express 2017, 25, 15330–15335. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.C.; Reinhardt, H.; Hillebrecht, P.; Hampp, N.A. Photochemical preparation of sub-wavelength heterogeneous laser-induced periodic surface structures. Adv. Mater. 2012, 24, 1994–1998. [Google Scholar] [CrossRef] [PubMed]
- Slepicka, P.; Nedela, O.; Siegel, J.; Krajcar, R.; Kolska, Z.; Svorcik, V. Ripple polystyrene nano-pattern induced by KrF laser. Express Polym. Lett. 2014, 8, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Slepicka, P.; Nedela, O.; Sajdl, P.; Kolska, Z.; Svorcik, V. Polyethylenenaphtalate as an excellent candidate for ripple nanopatterning. Appl. Surf. Sci. 2013, 285, 885–892. [Google Scholar] [CrossRef]
- Nedela, O.; Slepicka, P.; Sajdl, P.; Vesely, M.; Svorcik, V. Ripple pattern on PS and PEN induced with ring-shaped mask due to KrF laser treatment. Surf. Interface Anal. 2017, 49, 25–33. [Google Scholar] [CrossRef]
- Krajcar, R.; Siegel, J.; Slepicka, P.; Fitl, P.; Svorcik, V. Silver nanowires prepared on PET structured by laser irradiation. Mater. Lett. 2014, 117, 184–187. [Google Scholar] [CrossRef]
- Michaljaničová, I.; Slepička, P.; Rimpelová, S.; Slepičková Kasálková, N.; Švorčík, V. Regular pattern formation on surface of aromatic polymers and its cytocompatibility. Appl. Surf. Sci. 2016, 370, 131–141. [Google Scholar] [CrossRef]
- Teixeira, A.I.; Nealey, P.F.; Murphy, C.J. Responses of human keratocytes to micro- and nanostructured substrates. J. Biomed. Mater. Res. A 2004, 71, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Jager, M.; Sonntag, F.; Pietzsch, M.; Poll, R.; Rabenau, M. Surface modification of polymers by using excimer laser for biomedical applications. Plasma Process. Polym. 2007, 4, 416–418. [Google Scholar] [CrossRef]
- Xu, C.; Yang, F.; Wang, S.; Ramakrishna, S. In vitro study of human vascular endothelial cell function on materials with various surface roughness. J. Biomed. Mater. Res. A 2004, 71, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Ranucci, C.S.; Moghe, P.V. Substrate microtopography can enhance cell adhesive and migratory responsiveness to matrix ligand density. J. Biomed. Mater. Res. A 2001, 54, 149–161. [Google Scholar] [CrossRef]
- Ko, T.J.; Jo, W.; Lee, H.J.; Oh, K.H.; Moon, M.W. Nanostructures formed on carbon-based materials with different levels of crystallinity using oxygen plasma treatment. Thin Solid Films 2015, 590, 324–329. [Google Scholar] [CrossRef]
- Rebollar, E.; Frischauf, I.; Olbrich, M.; Peterbauer, T.; Hering, S.; Preiner, J.; Hinterdorfer, P.; Romanin, C.; Heitz, J. Proliferation of aligned mammalian cells on laser-nanostructured polystyrene. J. Biomater. 2008, 29, 1796–1806. [Google Scholar] [CrossRef] [PubMed]
- Duncan, A.C.; Rouais, F.; Lazare, S.; Bordenave, L.; Baquey, C. Effect of laser modified surface microtopochemistry on endothelial cell growth. Colloid Surf. B 2007, 54, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Yim, E.K.F.; Reano, R.M.; Pang, S.W.; Yeec, A.F.; Chen, C.S.; Leong, K.W. Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials 2005, 26, 5405–5413. [Google Scholar] [CrossRef] [PubMed]
- Dalby, M.J.; Riehle, M.O.; Johnstone, H.; Affrossman, S.; Curtis, A.S.G. Investigating the limits of filopodial sensing: a brief report using SEM to image the interaction between 10 nm high nano-topography and fibroblast filopodia. Cell Biol. Int. 2004, 28, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Chelli, B.; Barbalinardo, M.; Valle, F.; Greco, P.; Bysternova, E.; Bianchi, M.; Biscarini, F. Neural cell alignment by patterning gradients of the extracellular matrix protein laminin. Interface Focus 2014, 4. [Google Scholar] [CrossRef] [PubMed]
- Recknor, J.B.; Recknor, J.C.; Sakaguchi, D.S.; Mallapragada, S.K. Oriented astroglial cell growth on micropatterned polystyrene substrates. Biomaterials 2004, 25, 2753–2767. [Google Scholar] [CrossRef] [PubMed]
- Michaljaničová, I.; Slepička, P.; Veselý, M.; Kolská, Z.; Švorčík, V. Nanowires and nanodots prepared with polarized KrF laser on polyethersulphone. Mater. Lett. 2015, 144, 15–18. [Google Scholar] [CrossRef]
- Walachova, K.; Bacakova, L.; Dvorankova, B.; Svorcik, V. Biocompatibility of polymers modified by high-energy ions. Chem. Listy 2002, 96, 19–24. [Google Scholar]
- Carella, E.; Leon, M.; Sauvage, T.; Gonzalez, M. On ion implantation and damage effect in Li 2 TiO 3 as a fusion breeder blanket: A technological approach for degradation testing. Fusion Eng. Des. 2014, 89, 1529–1533. [Google Scholar] [CrossRef]
- Chang, Z.; Laverne, J.A. Hydrogen production in gamma-ray and helium-ion radiolysis of polyethylene, polypropylene, poly(methyl-methacrylate) and polystyrene. J. Polym. Sci. Polym. Chem. 2000, 38, 1656–1661. [Google Scholar] [CrossRef]
- Nikolaev, A.G.; Yushkov, G.Y.; Oks, E.M.; Oztarhan, A.; Akpek, A.; Hames-Kocabas, E.; Urkas, E.S.; Brown, I.G. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation. Appl. Surf. Sci. 2014, 310, 51–55. [Google Scholar] [CrossRef]
- Bacakova, L.; Svorcik, V.; Rybka, V.; Micek, I.; Hnatowicz, V.; Lisa, V.; Kocourek, F. Adhesion and proliferation of cultured human aortic smooth muscle cells on polystyrene implanted with N+, F+ and Ar+ ions: Correlation with polymer surface polarity and carbonization. Biomaterials 1996, 17, 1121–1126. [Google Scholar] [CrossRef]
- Shekhawat, N.; Aggarwal, S.; Sharma, A.; Nair, K.G.M. Surface hardening in N+ implanted polycarbonate. J. Mater. Sci. 2015, 50, 3005–3013. [Google Scholar] [CrossRef]
- Avalos, A.; Haza, A.I.; Morales, P. Cytotoxicity of silver nanoparticles on tumoral and normal human cells. Toxicol. Lett. 2012, 211, 202–203. [Google Scholar] [CrossRef]
- Hayes, J.S.; Czekanska, E.M.; Richards, R.G. Tissue Engineering III: Cell-Surface Interactions For Tissue Culture, 1st ed.; Kasper, C., Witte, F., Pörtner, R., Eds.; Springer: Heidelberg, Germany, 2012; Volume 126, p. 1. [Google Scholar]
- Gosau, M.; Haupt, M.; Thude, S.; Strowitzki, M.; Schminke, B.; Buergers, R. Antimicrobial effect and biocompatibility of novel metallic nanocrystalline implant coatings. J. Biomed. Mater. Res. B Appl. Biomater. 2016, 104, 1571–1579. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.S. Surface modification of poly(tetrafluoroethylene) film by chemical etching, plasma, and ion beam treatments. J. Appl. Polym. Sci. 2000, 77, 1913–1920. [Google Scholar] [CrossRef]
- Svorcik, V.; Proskova, K.; Hnatowicz, V.; Rybka, V. Iodine penetration and doping of ion-modified polyethylene. Nucl. Instrum. Methods Phys. Res. Sect. B 1999, 149, 312–318. [Google Scholar] [CrossRef]
- Predeep, P.; Mathew, A.M. Intrinsically conducing rubbers: toward micro applications. Rubber Chem. Technol. 2011, 84, 366–401. [Google Scholar]
- Svorcik, V.; Proskova, K.; Rybka, V.; Hnatowicz, V. Water diffusion in polyethylene modified by ion irradiation. Polym. Degrad. Stab. 1998, 60, 431–435. [Google Scholar] [CrossRef]
- Svorcik, V.; Rybka, V.; Hnatowicz, V.; Bacakova, L. Polarity, resistivity and biocompatibility of polyethylene doped with carbon black. J. Mater. Sci. Lett. 1995, 14, 1723–1724. [Google Scholar] [CrossRef]
- Svorcik, V.; Arenholz, E.; Rybka, V.; Hnatowicz, V. AFM surface morphology investigation of ion beam modified polyimide. Nucl. Instrum. Methods Phys. Res. Sect. B 1997, 122, 663–667. [Google Scholar] [CrossRef]
- Paterbauer, T.; Yakunin, S.; Siegel, J. Heitz, Dynamics of the alignment of mammalian cells on a nano-structured polymer surface. J. Modern Trends Polym. Sci.—EPF 09 2010, 296, 272–277. [Google Scholar]
- Mattioli, S.; Martino, S.; D’Angelo, F.; Emiliani, C.; Kenny, J.M.; Armenato, I. Nanostructured polystyrene films engineered by plasma processes: Surface characterization and stem cell interaction. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Svorcik, V.; Endrst, R.; Rybka, V.; Hnatowicz, V. Time dependence of the number of unpaired electrons and the sheet resistance in ion irradiated polymers. Mater. Lett. 1996, 28, 441–444. [Google Scholar] [CrossRef]
- Alonso, J.L.; Goldmann, W.H. Cellular mechanotransduction. AIMS Biophys. 2016, 3, 50–62. [Google Scholar] [CrossRef]
- Gencer, G.M.; Karadeniz, S.; Lambrecht, F.Y.; Havitcioglu, H.; Ozkal, S.; Baskin, H. The effects of plasma immersion ion implantation and deposition (PIII&D) process voltages on the morphology, phase formation and E. coli adhesion of Ag coatings obtained on the surface of Ti6Al4V orthopedic implant material in nitrogen plasma. J. Fac. Eng. Archit. Gazi 2017, 32, 231–241. [Google Scholar]
- Chvatalova, L.; Cermak, R.; Mracek, A.; Grulich, O.; Vesel, A.; Ponozil, P.; Minarik, A.; Cvelbar, U.; Benicek, L.; Sajdl, P. The effect of plasma treatment on structure and properties of poly(1-buten) surface. Eur. Polym J. 2012, 48, 866–874. [Google Scholar] [CrossRef]
- Junkar, I. Plasma treatment of amorphous and semicrystalline polymers for improved biocompatibility. J. Vac. 2013, 98, 111–115. [Google Scholar] [CrossRef]
- Kessler, F.; Steffens, D.; Lando, G.A.; Pranke, P.; Weibel, D.E. Wettability and cell spreading enhancement in poly(sulfone) and polyurethane surfaces by UV-assisted treatment for tissue engineering purposes. J. Tissue Eng. Regen. Med. 2014, 11, 23–31. [Google Scholar] [CrossRef]
- Bax, D.V.; McKenzie, D.R.; Bilek, M.M.M.; Weiss, A.S. Directed cell attachment by tropoelastin on masked plasma immersion ion implantation treated PTFE. Biomaterials 2011, 32, 6710–6718. [Google Scholar] [CrossRef] [PubMed]
- Barkusky, F.; Bayer, A.; Mann, K. Ablation of polymers by focused EUV radiation from a table-top laser-produced plasma source. Appl. Phys. A Mater. Sci. Process. 2011, 105, 17–23. [Google Scholar] [CrossRef]
- Siegel, J.; Reznickova, A.; Chaloupka, A.; Slepicka, P.; Svorcik, V. Ablation and water etching of plasma treated polymers. Radiat. Eff. Defects Solids 2008, 163, 779–788. [Google Scholar] [CrossRef]
- Kutasi, K.; Bibinov, N.; von Keudell, A.; Wiesermann, K. Wettabilities of plasma deposited polymer films. J. Optoelectron. Adv. Mater. 2005, 7, 2549–2556. [Google Scholar]
- Wilson, D.J.; Pond, R.C.; Williams, R.L. Wettability of chemically modified polymers: experiment and theory. Interface Sci. 2000, 8, 389–399. [Google Scholar] [CrossRef]
- Huang, X.; Li, C.C.; Zhu, W.X.; Zhang, D.; Guan, G.H.; Xiao, Y.N. Ultraviolet-induced crosslinking of poly(butylene succinate) and its thermal property, dynamic mechanical property, and biodegradability. Polym. Adv. Technol. 2011, 22, 648–656. [Google Scholar] [CrossRef]
- Reznickova, A.; Novotna, Z.; Kolska, Z.; Slepickova Kasalkova, N.; Rimpelova, S.; Svorcik, V. Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene. Mater. Sci. Eng. C 2015, 52, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Nedela, O.; Slepicka, P.; Kolska, Z.; Slepickova Kasalkova, N.; Sajdl, P.; Vesely, M.; Svorcik, V. Functionalized polyethylene naphthalate for cytocompatibility improvement. React. Funct. Polym. 2016, 100, 44–52. [Google Scholar] [CrossRef]
- Metz, R.P.; Patterson, J.J.; Wilson, E. Vascular Smooth Muscle Cells: Isolation, Culture, and Characterization. Methods Mol. Biol. 2012, 843, 169–176. [Google Scholar] [PubMed]
- Zimmermanm, R.; Birkert, O.; Gauglitz, G.; Werner, C. Electrosurface phenomena at polymer films for biosensor applications. ChemPhysChem 2003, 4, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Kirby, B.J.; Hasselbrink, E.F. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 2004, 25, 187–202. [Google Scholar] [CrossRef] [PubMed]
- Grancaric, A.M.; Tarbuk, A.; Pusic, T. Electrokinetic properties of textile fabrics. Color Technol. 2005, 121, 221–227. [Google Scholar] [CrossRef]
- Kolska, Z.; Reznickova, A.; Nagyova, M.; Slepickova Kasalkova, N.; Sajdl, P.; Slepicka, P.; Svorcik, V. Plasma activated polymers grafted with cysteamine improving surfaces cytocompatibility. Polym. Degrad. Stab. 2014, 101, 1–9. [Google Scholar] [CrossRef]
- Slepička, P.; Peterková, L.; Rimpelová, S.; Pinkner, A.; Slepičková Kasálková, N.; Kolská, Z.; Ruml, T.; Švorčík, V. Plasma activation of perfluoroethylenepropylene for cytocompatibility enhancement. Polym. Degrad. Stab. 2016, 130, 277–287. [Google Scholar] [CrossRef]
- Slepicka, P.; Trostova, S.; Slepickova Kasalkova, N.; Kolska, Z.; Malinsky, P.; Mackova, A.; Bacakova, L.; Svorcik, V. Nanostructuring of polymethylpentene by plasma and heat treatment for improved biocompatibility. Polym. Degrad. Stab. 2012, 97, 1075–1082. [Google Scholar] [CrossRef]
- Olivares-Navarrete, R.; Hyzy, S.L.; Gittens, R.A.; Schneider, J.M.; Haithcock, D.A.; Ullrich, P.F.; Slosar, P.J.; Schwartz, Z.; Boyan, B.D. Rough titanium alloys regulate osteoblast production of angiogenic factors. J. Spine 2013, 13, 1563–1570. [Google Scholar] [CrossRef] [PubMed]
- Ellinas, K.; Tserepi, A.; Gogolides, E. From superamphiphobic to amphiphilic polymeric surfaces with ordered hierarchical roughness fabricated with colloidal lithography and plasma nanotexturing. Langmuir 2011, 27, 3960–3969. [Google Scholar] [CrossRef] [PubMed]
- Tsougeni, K.; Vourdas, N.; Tserepi, A.; Gogolides, E. Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: From stable super hydrophilic to super hydrophobic surfaces. Langmuir 2009, 25, 11748–11759. [Google Scholar] [CrossRef] [PubMed]
- Gianneli, M.; Tsougeni, K.; Grammoustianou, A.; Tserepi, A.; Gogolides, E.; Gizeli, E. Nanostructured PMMA-coated Love wave device as a platform for protein adsorption studies. Sens. Actuators B 2016, 236, 583–590. [Google Scholar] [CrossRef]
- Dimitrakellis, P.; Travlos, A.; Psycharis, V.P.; Gogolides, E. Superhydrophobic Paper by Facile and Fast Atmospheric Pressure Plasma Etching. Plasma Process. Polym. 2017, 14. [Google Scholar] [CrossRef]
- Ellinas, K.; Tsougeni, K.; Petrou, P.S.; Boulousis, G.; Tsoukleris, D.; Pavlatou, E.; Tserepi, A.; Kakabakos, S.E.; Gogolides, E. Three-dimensional plasma micro–nanotextured cyclo-olefin-polymer surfaces for biomolecule immobilization and environmentally stable superhydrophobic and superoleophobic behavior. Chem. Eng. J. 2016, 300, 394–403. [Google Scholar] [CrossRef]
- Ellinas, K.; Pujari, S.P.; Dragatogiannis, D.A.; Charitidis, C.A.; Tserepi, A.; Zuilhof, H.; Gogolides, E. Plasma micro-nanotextured, scratch, water and hexadecane resistant, superhydrophobic, and superamphiphobic polymeric surfaces with perfluorinated monolayers. ACS Appl. Mater. Interfaces 2014, 6, 6510–6524. [Google Scholar] [CrossRef] [PubMed]
- Gogolides, E.; Ellinas, K.; Tserepi, A. Hierarchical micro and nano structured, hydrophilic, superhydrophobic and superoleophobic surfaces incorporated in microfluidics, microarrays and lab on chip microsystems. Microelectron. Eng. 2015, 132, 135–155. [Google Scholar] [CrossRef]
- Leite, A.J.; Mano, J.F. Biomedical applications of natural-based polymers combined with bioactive glass nanoparticles. J. Mater. Chem. B 2017, 5, 4555–4568. [Google Scholar] [CrossRef]
- Carvalho, A.L.; Vale, A.C.; Sousa, M.P.; Barbosa, A.M.; Torrado, E.; Mano, J.F.; Alves, N.M. Antibacterial bioadhesive layer-by-layer coatings for orthopedic applications. J. Mater. Chem. B 2016, 4, 5385–5393. [Google Scholar] [CrossRef]
- Tsougeni, K.; Petrou, P.S.; Awsiuk, K.; Marzec, M.M.; Ioannidis, N.; Petrouleas, V.; Tserepi, A.; Kakabakos, S.E.; Gogolides, E. Direct Covalent Biomolecule Immobilization on Plasma-Nanotextured Chemically Stable Substrates. ACS Appl. Mater. Interfaces 2015, 7, 14670–14681. [Google Scholar] [CrossRef] [PubMed]
- Slepičková Kasálková, N.; Slepička, P.; Kolská, Z.; Hodačová, P.; Kučková, Š.; Švorčík, V. Grafting of bovine serum albumin proteins on plasma-modified polymers for potential application in tissue engineering. Nanoscale Res. Lett. 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Bilek, M.M.; McKenzie, D.R. Plasma modified surfaces for covalent immobilization of functional biomolecules in the absence of chemical linkers: towards better biosensors and a new generation of medical implants. Biophys. Rev. 2010, 2, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Bilek, M.M.; Bax, D.V.; Kondyurin, A.; Yin, Y.; Nosworthy, N.J.; Fisher, K.; Waterhouse, A.; Weiss, A.S.; dos Remedios, C.G.; McKenzie, D.R. Free radical functionalization of surfaces to prevent adverse responses to biomedical devices. Proc. Natl. Acad. Sci. USA 2011, 108, 14405–14410. [Google Scholar] [CrossRef] [PubMed]
- Schober, J.M.; Komarova, Y.A.; Chaga, O.Y.; Akhmanova, A.; Borisy, G.G. Microtubule-targeting-dependent reorganization of filopodia. J. Cell Sci. 2007, 120, 1235–1244. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, J.; Kwon, S.; Jeong, S. Preparation of biodegradable polymer/silver nanoparticles composite and its antibacterial efficacy. J. Nanosci. Nanotechnol. 2009, 9, 1098–1102. [Google Scholar] [CrossRef]
- Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhonde, R.R.; Sastry, M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 2005, 21, 10644–10654. [Google Scholar] [CrossRef] [PubMed]
- Parizek, M.; Kasalkova, N.; Bacakova, L.; Slepicka, P.; Blazkova, M.; Svorcik, V. Improved adhesion, growth and maturation of vascular smooth muscle cells on polyethylene grafted with bioactive molecules and carbon particles. Int. J. Mol. Sci. 2009, 10, 4352–4374. [Google Scholar] [CrossRef] [PubMed]
- Oh, W.K.; Yoon, H.; Jang, J. Size control of magnetic carbon nanoparticles for drug delivery. Biomaterials 2010, 31, 1342–1348. [Google Scholar] [CrossRef] [PubMed]
- Tavangarian, F.; Li, Y. Carbon nanostructures as nerve scaffolds for repairing large gaps in severed nerves. Ceram. Int. 2012, 38, 6075–6090. [Google Scholar] [CrossRef]
- Liao, C.Z.; Li, K.; Wong, H.M.; Tong, W.Y.; Yeung, K.W.K.; Tjong, S.C. Novel polypropylene biocomposites reinforced with carbon nanotubes and hydroxyapatite nanorods for bone replacements. Mater. Sci. Eng. C 2013, 33, 1380–1388. [Google Scholar] [CrossRef] [PubMed]
- Asakawa, R.; Nagashima, S.; Nakamura, Y.; Hasebe, T.; Suzuki, T.; Hotta, A. Combining polymers with diamond-like carbon (DLC) for highly functionalized materials. Surf. Coat. Thechnol. 2011, 206, 676–685. [Google Scholar] [CrossRef]
- Guerrouache, M.; Mahouche-Chergui, S.; Chehimi, M.M.; Carbonnier, B. Site-specific immobilisation of gold nanoparticles on a porous monolith surface by using a thiol–yne click photopatterning approach. Chem. Commun. 2012, 48, 7486–7488. [Google Scholar] [CrossRef] [PubMed]
- Guerra, J.; Herrero, M.A.; Carrion, B.; Perez-Martinez, F.C.; Lucio, M.; Rubio, N. Carbon nanohorns functionalized with polyamidoamine dendrimers as efficient biocarrier materials for gene therapy. Carbon 2012, 50, 2832–2844. [Google Scholar] [CrossRef]
- Jones, M.R.; Osberg, K.D.; Macfarlane, R.J.; Langille, M.R.; Mirkin, C.A. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev. 2011, 111, 3736–3827. [Google Scholar] [CrossRef] [PubMed]
- Reznickova, A.; Siegel, J.; Slavikova, N.; Kolska, Z.; Stazsek, M.; Svorcik, V. Preparation of Ordered Silver Angular Nanoparticles Array in Copolymer Film for Surface Enhanced Raman Spectroscopy. React. Funct. Polym. 2016, 105, 1–8. [Google Scholar] [CrossRef]
- Chen, W.; Jie-Rong, C.; Lu, R. Studies on surface modification of poly(tetrafluoroethylene) film by remote and direct Ar plasma. Appl. Surf. Sci. 2008, 254, 2882–2888. [Google Scholar]
- Reznickova, A.; Novotna, Z.; Kolska, Z.; Svorcik, V. Immobilization of silver nanoparticles on polyethylene terephthalate. Nanoscale Res. Lett. 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.; Pedrosa, P.; Lanceros-Mendez, S.; Machado, A.V.; Vaz, F. Activation of polyethylene terephthalate using different plasma treatments. J. Optoelectron. Adv. Mater. 2010, 12, 1581–1589. [Google Scholar]
- Slepickova Kasalkova, N.; Slepicka, P.; Kolska, Z.; Sajdl, P.; Bacakova, L.; Rimpelova, S.; Svorcik, V. Cell adhesion and proliferation on polyethylene grafted with Au nanoparticles. Nucl. Instrum. Methods Phys. Res. B 2012, 272, 391–395. [Google Scholar] [CrossRef]
- Vesel, A.; Semenic, T. Etching rates of different polymers and oxygen plasma = Study of the etching rate of various polymers in oxygen plasma. Mater. Technol. 2012, 46, 227–231. (In Slovenian) [Google Scholar]
- Svorcik, V.; Makajova, Z.; Slepickova Kasalkova, N.; Kolska, Z.; Zakova, P.; Karpiskova, J.; Stibor, I.; Slepicka, P. Cytocompatibility of polymers grafted by activated carbon nano-particles. Carbon 2014, 69, 361–371. [Google Scholar] [CrossRef]
- Satishkumar, R.; Vertegel, A. Charge-directed targeting of antimicrobial protein-nanoparticle conjugates. Biotechnol. Bioeng. 2008, 100, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Ragusa, A.; Garcia, I.; Penades, S. Nanoparticles as Nonviral Gene Delivery Vectors. IEEE Trans. Nanobiosci. 2007, 6, 319–330. [Google Scholar] [CrossRef]
- Campelo, J.M.; Conesa, T.D.; Gracia, M.J.; Jurado, M.J.; Luque, R.; Marinas, J.M.; Romero, A.A. Microwave facile preparation of highly active and dispersed SBA-12 supported metal nanoparticles. Green Chem. 2008, 10, 853–858. [Google Scholar] [CrossRef]
- Hu, X.G.; Dong, S.J. Metal nanomaterials and carbon nanotubes—Synthesis, functionalization and potential applications towards electrochemistry. J. Mater. Chem. 2008, 18, 1279–1295. [Google Scholar] [CrossRef]
- Chen, L.; Sun, J.Y.; Zhu, Z.S.; Wu, K.Y.; Lj, W.J.; Liu, H.M.; Xu, S. The adhesion and proliferation of bone marrow-derived mesenchymal stem cells promoted by nanoparticle surface. J. Biomater. Appl. 2013, 27, 525–536. [Google Scholar] [CrossRef] [PubMed]
- Stazsek, M.; Siegel, J.; Rimpelova, S.; Lyutakov, O.; Svorcik, V. Cytotoxicity of noble metal nanoparticles sputtered into glycerol. Mater. Lett. 2015, 158, 351–354. [Google Scholar] [CrossRef]
- Marakova, N.; Humpolicek, P.; Kasparkova, V.; Capakova, Z.; Martinkova, L.; Bober, P.; Trchova, M.; Stejskal, J. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles. Appl. Surf. Sci. 2017, 396, 169–176. [Google Scholar] [CrossRef]
- Slepička, P.; Malá, Z.; Rimpelová, S.; Švorčík, V. Antibacterial properties of modified biodegradable PHB non-woven fabric. Mater. Sci. Eng. C 2016, 65, 364–368. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neděla, O.; Slepička, P.; Švorčík, V. Surface Modification of Polymer Substrates for Biomedical Applications. Materials 2017, 10, 1115. https://doi.org/10.3390/ma10101115
Neděla O, Slepička P, Švorčík V. Surface Modification of Polymer Substrates for Biomedical Applications. Materials. 2017; 10(10):1115. https://doi.org/10.3390/ma10101115
Chicago/Turabian StyleNeděla, Oldřich, Petr Slepička, and Václav Švorčík. 2017. "Surface Modification of Polymer Substrates for Biomedical Applications" Materials 10, no. 10: 1115. https://doi.org/10.3390/ma10101115
APA StyleNeděla, O., Slepička, P., & Švorčík, V. (2017). Surface Modification of Polymer Substrates for Biomedical Applications. Materials, 10(10), 1115. https://doi.org/10.3390/ma10101115