# Analytical Modeling of Wind Farms: A New Approach for Power Prediction

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Description of the New Analytical Wind Farm Model

#### 2.1. Analytical Model for the Velocity Deficit

#### 2.2. Turbulence Intensity Model

#### 2.3. Power Prediction

## 3. Case Description

^{2}. It is located in the North Sea, approximately 15 km off the westernmost point of Denmark. Each turbine has a rotor diameter of $d=80\text{m}$ and a hub height of ${H}_{hub}=70\text{m}$ (above sea level). Figure 3 shows a schematic of the Horns Rev wind farm layout. The wind farm has a rhomboid shape with wind turbines arranged in 8 columns (aligned with the East-West direction) and 10 rows (turned approximately 7° counterclockwise from the North-South direction). The turbines are regularly spaced, with a minimum spacing between two consecutive turbines of 7 rotor diameters.

## 4. Results and Discussion

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Globalwind Energy Council. Globalwind Report: Annual Market Update 2012. Available online: Http://www.Gwec.Net/wp-content/uploads/2012/06/annual report 2012 lowres.pdf (accessed on 30 June 2013).
- Barthelmie, R.J.; Pryor, S.; Frandsen, S.T.; Hansen, K.S.; Schepers, J.; Rados, K.; Schlez, W.; Neubert, A.; Jensen, L.; Neckelmann, S. Quantifying the impact of wind turbine wakes on power output at offshore wind farms. J. Atmos. Oceanic Technol.
**2010**, 27, 1302–1317. [Google Scholar] [CrossRef] - Crespo, A.; Hernandez, J.; Frandsen, S. Survey of modelling methods for wind turbine wakes and wind farms. Wind Energy
**1999**, 2, 1–24. [Google Scholar] [CrossRef] - Chowdhury, S.; Zhang, J.; Messac, A.; Castillo, L. Optimizing the arrangement and the selection of turbines for wind farms subject to varying wind conditions. Renew. Energy
**2013**, 52, 273–282. [Google Scholar] [CrossRef] - Lissaman, P.B.S. Energy effectiveness of arbitrary arrays of wind turbines. J. Energy
**1979**, 3, 323–328. [Google Scholar] [CrossRef] - Katic, I.; Højstrup, J.; Jensen, N. A Simple Model for Cluster Efficiency. In Proceedings of the European Wind Energy Association Conference and Exhibition, Rome, Italy, 1986; pp. 407–410.
- Frandsen, S. On the wind speed reduction in the center of large clusters of wind turbines. J. Wind Eng. Ind. Aerodyn.
**1992**, 39, 251–265. [Google Scholar] [CrossRef] - Calaf, M.; Meneveau, C.; Meyers, J. Large eddy simulation study of fully developed wind-turbine array boundary layers. Phys. Fluids
**2010**, 22, 015110. [Google Scholar] [CrossRef] - Abkar, M.; Porté-Agel, F. The effect of free-atmosphere stratification on boundary-layer flow and power output from very large wind farms. Energies
**2013**, 6, 2338–2361. [Google Scholar] [CrossRef] - Stevens, R.J.; Gayme, D.F.; Meneveau, C. Coupled wake boundary layer model of wind-farms. J. Renew. Sustain. Energy
**2015**, 7, 023115. [Google Scholar] [CrossRef] - Stevens, R.J.; Gayme, D.F.; Meneveau, C. Generalized coupled wake boundary layer model: Applications and comparisons with field and les data for two wind farms. Wind Energy
**2016**. [Google Scholar] [CrossRef] - Jensen, N.O. A Note on Wind Generator Interaction; Technical report Ris-M-2411; Risø National Laboratory: Roskilde, Denmark, 1983. [Google Scholar]
- Voutsinas, S.; Rados, K.; Zervos, A. On the analysis of wake effects in wind parks. Wind Eng.
**1990**, 14, 204–219. [Google Scholar] - Frandsen, S.; Barthelmie, R.; Pryor, S.; Rathmann, O.; Larsen, S.; Højstrup, J.; Thøgersen, M. Analytical modelling of wind speed deficit in large offshore wind farms. Wind Energy
**2006**, 9, 39–53. [Google Scholar] [CrossRef] - Bastankhah, M.; Porté-Agel, F. A new analytical model for wind-turbine wakes. Renew. Energy
**2014**, 70, 116–123. [Google Scholar] [CrossRef] - González, J.S.; Rodriguez, A.G.G.; Mora, J.C.; Santos, J.R.; Payan, M.B. Optimization of wind farm turbines layout using an evolutive algorithm. Renew. Energy
**2010**, 35, 1671–1681. [Google Scholar] [CrossRef] - Barthelmie, R.; Larsen, G.; Frandsen, S.; Folkerts, L.; Rados, K.; Pryor, S.; Lange, B.; Schepers, G. Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar. J. Atmos. Oceanic Technol.
**2006**, 23, 888–901. [Google Scholar] [CrossRef] - Crasto, G.; Gravdahl, A.; Castellani, F.; Piccioni, E. Wake modeling with the actuator disc concept. Energy Procedia
**2012**, 24, 385–392. [Google Scholar] [CrossRef] - Garrad Hassan and Partners Ltd. GH Windfarmer Theory Manual; Garrad Hassan and Partners Ltd.: Bristol, UK, 2009. [Google Scholar]
- Openwind Theoretical Basis and Validation; AWS Truepower, LCC: Albany, NY, USA, 2010.
- Thogersen, M.L.; Sorensen, T.; Nielsen, P.; Grotzner, A.; Chun, S. Introduction to Wind Turbine Wake Modelling and Wake Generated Turbulence; Risø National Laboratory, EMD International A/S: Aalborg, Denmark, 2006. [Google Scholar]
- Chamorro, L.P.; Porté-Agel, F. A wind-tunnel investigation of wind-turbine wakes: Boundary-layer turbulence effects. Boundary-Layer Meteorol.
**2009**, 132, 129–149. [Google Scholar] [CrossRef] - Wu, Y.-T.; Porté-Agel, F. Atmospheric turbulence effects on wind-turbine wakes: An les study. Energies
**2012**, 5, 5340–5362. [Google Scholar] [CrossRef] - Xie, S.; Archer, C. Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation. Wind Energy
**2015**, 18, 1815–1838. [Google Scholar] [CrossRef] - Abkar, M.; Porté-Agel, F. Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study. Phys. Fluids
**2015**, 27, 035104. [Google Scholar] [CrossRef] - Porté-Agel, F.; Wu, Y.-T.; Chen, C.-H. A numerical study of the effects of wind direction on turbine wakes and power losses in a large wind farm. Energies
**2013**, 6, 5297–5313. [Google Scholar] [CrossRef] - Abkar, M.; Porté-Agel, F. Mean and turbulent kinetic energy budgets inside and above very large wind farms under conventionally-neutral condition. Renew. Energy
**2014**, 70, 142–152. [Google Scholar] [CrossRef] - Abkar, M.; Sharifi, A.; Porté-Agel, F. Wake flow in a wind farm during a diurnal cycle. J. Turbulence
**2016**, 17, 1–22. [Google Scholar] [CrossRef] - Porté-Agel, F.; Wu, Y.-T.; Lu, H.; Conzemius, R.J. Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms. J. Wind Eng. Ind. Aerodyn.
**2011**, 99, 154–168. [Google Scholar] [CrossRef] - Quarton, D.; Ainslie, J. Turbulence in wind turbine wakes. Wind Eng.
**1990**, 14, 15–23. [Google Scholar] - Hassan, U.; Hassan, G. A Wind Tunnel Investigation of the Wake Structure within Small Wind Turbine Farms; Harwell Laboratory, Energy Technology Support Unit: Brighton, UK, 1993. [Google Scholar]
- Crespo, A.; Hernandez, J. Turbulence characteristics in wind-turbine wakes. J. Wind Eng. Ind. Aerodyn.
**1996**, 61, 71–85. [Google Scholar] [CrossRef] - Vermeulen, P. An Experimental Analysis of Wind Turbine Wakes. In Proceedings of the International Symposium on Wind Energy Systems, Copenhagen, Denmark, 26–29 August 1980; pp. 431–450.
- Abkar, M.; Porté-Agel, F. A new wind-farm parameterization for large-scale atmospheric models. J. Renew. Sustain. Energy
**2015**, 7, 013121. [Google Scholar] [CrossRef] - Frandsen, S.; Thogersen, M.L. Integrated fatigue loading for wind turbines in wind farms by combining ambient turbulence and wakes. Wind Eng.
**1999**, 23, 327–340. [Google Scholar] - Wu, Y.-T.; Porté-Agel, F. Modeling turbine wakes and power losses within a wind farm using les: An application to the horns rev offshore wind farm. Renew. Energy
**2015**, 75, 945–955. [Google Scholar] [CrossRef] - Barthelmie, R.J.; Hansen, K.; Frandsen, S.T.; Rathmann, O.; Schepers, J.; Schlez, W.; Phillips, J.; Rados, K.; Zervos, A.; Politis, E. Modelling and measuring flow and wind turbine wakes in large wind farms offshore. Wind Energy
**2009**, 12, 431–444. [Google Scholar] [CrossRef]

**Figure 1.**Wake growth rate for the V-80 turbine in boundary layer flow with different streamwise turbulence intensities at hub height.

**Figure 2.**Power curve of the V-80 wind turbine. Red circles correspond to the manufacturer’s data and the blue line represents a polynomial fit.

**Figure 3.**Layout of the Horns Rev wind farm. Distances are normalized by the rotor diameter $d=80$ .

**Figure 4.**Measured and simulated power curve and thrust coefficient curve of the Vestas V-80 2 MW wind turbine, for a range of wind speeds (Source: Wu and Porté-Agel, 2014).

**Figure 5.**Distribution of the normalized Horns Rev wind farm power output obtained with the new analytical model and LES for different wind directions.

**Figure 6.**Comparison of the wind-farm power output for ${\theta}_{wind}=270\xb0$ obtained using LES as well as the new analytical model with both energy and velocity deficit superpositions.

**Figure 7.**Comparison of the power output for ${\theta}_{wind}$ = 270° obtained with the new analytical model using a constant wake growth rate and a variable wake growth rate based on the local streamwise turbulence intensity.

**Figure 8.**Comparison of the simulated and observed power output centered on three mean wind directions ${\theta}_{wind}$ = 270° (

**a**); 222° (

**b**) and 312° (

**c**). Symbols, lines, and dashed lines denote the observed, new analytical model, and WAsP data, respectively. Blue, red, and black colors represent ±5°, ±10°, and ±15° wind sectors, respectively.

**Figure 9.**Comparison of the time-averaged streamwise velocity at a horizontal plane at hub height: (

**a**) LES; (

**b**) new analytical model and (

**c**) top-hat model.

**Figure 10.**Comparison of the streamwise turbulence intensity at hub height immediately upstream of each turbine row, obtained with LES and three simple models.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Niayifar, A.; Porté-Agel, F.
Analytical Modeling of Wind Farms: A New Approach for Power Prediction. *Energies* **2016**, *9*, 741.
https://doi.org/10.3390/en9090741

**AMA Style**

Niayifar A, Porté-Agel F.
Analytical Modeling of Wind Farms: A New Approach for Power Prediction. *Energies*. 2016; 9(9):741.
https://doi.org/10.3390/en9090741

**Chicago/Turabian Style**

Niayifar, Amin, and Fernando Porté-Agel.
2016. "Analytical Modeling of Wind Farms: A New Approach for Power Prediction" *Energies* 9, no. 9: 741.
https://doi.org/10.3390/en9090741