Simulating Dynamic Stall Effects for Vertical Axis Wind Turbines Applying a Double Multiple Streamtube Model
Abstract
: The complex unsteady aerodynamics of vertical axis wind turbines (VAWT) poses significant challenges to the simulation tools. Dynamic stall is one of the phenomena associated with the unsteady conditions for VAWTs, and it is in the focus of the study. Two dynamic stall models are compared: the widely-used Gormont model and a Leishman–Beddoes-type model. The models are included in a double multiple streamtube model. The effects of flow curvature and flow expansion are also considered. The model results are assessed against the measured data on a Darrieus turbine with curved blades. To study the dynamic stall effects, the comparison of force coefficients between the simulations and experiments is done at low tip speed ratios. Simulations show that the Leishman–Beddoes model outperforms the Gormont model for all tested conditions.1. Introduction
2. Method
2.1. Dynamic Stall Effects
2.1.1. Leishman–Beddoes Model
2.1.2. Gormont Model
2.1.3. Vortex Shedding
2.2. Additional Modifications
2.2.1. Flow Expansion
2.2.2. Flow Curvature
3. Simulation Parameters
4. Results and Discussion
4.1. Assessment of the Model
4.2. Final Discussions
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sutherland, H.J.; Berg, D.E.; Ashwill, T.D. A Retrospective of VAWT Technology; Technical Report SAND2012-0304; Sandia National Laboratories: Albuquerque, NM, USA, 2012. [Google Scholar]
- Hunter, P.C. Multi-megawatt vertical axis wind turbine, Proceedings of the Hamburg Offshore Wind Conference, VertAx Wind Limited, Hamburg, Germany, 17 April 2009.
- Ottermo, F.; Bernhoff, H. An upper size of vertical axis wind turbines. Wind Energy 2013, 17, 1623–1629. [Google Scholar]
- Paulsen, U.S.; Madsen, H.A.; Hattel, J.H.; Baran, I.; Nielsen, P.H. Design optimization of a 5 MW floating offshore vertical-axis wind turbine, Proceedings of the 10th Deep Sea Offshore Wind R & D Conference, DeepWind 2013, Trondheim, Norway, 24–25 January 2013; pp. 22–32.
- Shires, A. Design optimisation of an offshore vertical axis wind turbine. Proc. Instit. Civil Eng. Energy. 2013, 166, 7–18. [Google Scholar]
- Blusseau, P.; Patel, M.H. Gyroscopic effects on a large vertical axis wind turbine mounted on a floating structure. Renew. Energy. 2012, 46, 31–42. [Google Scholar]
- Kaldellis, J.K.; Kapsali, M. Shifting towards offshore wind energy—Recent activity and future development. Energy Policy 2013, 53, 136–148. [Google Scholar]
- Ferreira, C.J.S.; van Zuijlen, A.; Bijl, H.; van Bussel, G.; van Kuik, G. Simulating dynamic stall in a two-dimensional vertical-axis wind turbine: Verification and validation with particle image velocimetry data. Wind Energy 2009, 13, 1–17. [Google Scholar]
- Goude, A.; Bülow, F. Robust VAWT control system evaluation by coupled aerodynamic and electrical simulations. Renew. Energy. 2013, 59, 193–201. [Google Scholar]
- Kirke, B.K.; Lazauskas, L. Limitations of fixed pitch Darrieus hydrokinetic turbines and the challenge of variable pitch. Renew. Energy. 2011, 36, 893–897. [Google Scholar]
- Pereira, R. Validating the Beddoes–Leishman Dynamic Stall Model in the Horizontal Axis Wind Turbine Environment. MS.c. Thesis, Department of Control and Operations, Delft University of Technology, Delft, The Netherlands, 2010. [Google Scholar]
- Paraschivoiu, I. Wind Turbine Design-With Emphasis on Darrieus Concept; Presses Internationales Polytechnique: Montreal, QC, Canada, 2002. [Google Scholar]
- Gormont, R.E. A Mathematical Model of Unsteady Aerodynamics and Radial Flow for Application to Helicopter Rotors; Technical Report 72–67; NTIS: Springfield, VA, USA, 1973. [Google Scholar]
- Massé, B. Description de Deux Programmes D’ordinateur pour le Calcul des Performances et des Charges Aerodynamiques pour des Eoliennes A’axe Vertical; Technical Report IREQ 2379; Institut de Recherche de L’Hydro–Quebec: Varennes, QC, Canada, 1981; In French. [Google Scholar]
- Berg, D.E. An improved double-multiple streamtube model for the Darrieus type vertical-axis wind turbine, Proceedings of the Sixth Biennial Wind Energy Conference and Workshop, Minneapolis, MN, USA, 1 June 1983; pp. 231–238.
- Shires, A. Development and evaluation of an aerodynamic model for a novel vertical axis wind turbine concept. Energies 2013, 6, 2501–2520. [Google Scholar]
- Bedon, G.; Castelli, M.R.; Benini, E. Optimal spanwise chord and thickness distribution for a Troposkien Darrieus wind turbine. J. Wind Eng. Ind. Aerodyn. 2014, 125, 13–21. [Google Scholar]
- Shires, A.; Kourkoulis, V. Application of circulation controlled blades for vertical axis wind turbines. Energies 2013, 6, 3744–3763. [Google Scholar]
- Bedon, G.; Castelli, M.R.; Benini, E. Optimization of a Darrieus vertical-axis wind turbine using blade element–momentum theory and evolutionary algorithm. Renew. Energy. 2013, 59, 184–192. [Google Scholar]
- Castelli, M.R.; Fedrigo, A.; Benini, E. Effect of dynamic stall, finite aspect ratio and streamtube expansion on VAWT performance prediction using the BE-M model. Int. J. Eng. Phys. Sci. 2012, 6, 237–249. [Google Scholar]
- Beddoes, T.S. Representation of airfoil behavior. Vertica 1983, 7, 183–197. [Google Scholar]
- Leishman, J.G.; Beddoes, T.S. A generalised model for airfoil unsteady behavior and dynamic stall using the indicial method, Proceedings of the 42th Annual Forum of the American Helicopter Society, Washington, DC, USA, 2–4 June 1986; pp. 243–265.
- Leishman, J.G.; Beddoes, T.S. A semi-empirical model for dynamic stall. J. Am. Helicopter Soc 1989, 34, 3–17. [Google Scholar]
- Dyachuk, E.; Goude, A.; Bernhoff, H. Dynamic stall modeling for the conditions of vertical axis wind turbines. AIAA J 2014, 52, 72–81. [Google Scholar]
- Scheurich, F.; Fletcher, T.M.; Brown, R.E. Simulating the aerodynamic performance and wake dynamics of a vertical-axis wind turbine. Wind Energy 2011, 14, 159–177. [Google Scholar]
- Strickland, J.H.; Webster, B.T.; Nguyen, T. A vortex model of the Darrieus turbine: An analytical and experimental study. J. Fluids Eng 1979, 101, 500–505. [Google Scholar]
- Ashuri, T.; van Bussel, G.; Mieras, S. Development and validation of a computational model for design analysis of a novel marine turbine. Wind Energy 2013, 16, 77–90. [Google Scholar]
- Akins, R.E. Measurements of Surface Pressures on an Operating Vertical-Axis Wind Turbine; Technical Report SAND89-7051; Sandia National Laboratories: Albuquerque, NM, USA, 1989. [Google Scholar]
- Sheng, W.; Galbraith, R.A.M.; Coton, F.N. A modified dynamic stall model for low mach numbers. J. Solar Energy Eng 2008, 130, 1–10. [Google Scholar]
- Paraschivoiu, I.; Delclaux, F. Double multiple streamtube model with recent improvements. J. Energy. 1983, 7, 250–255. [Google Scholar]
- Read, S.; Sharpe, D.J. An extended multiple streamtube theory for vertical axis wind turbines, Proceedings of the Second BWEA Wind Energy Workshop, Kingston upon Thames, UK, April 1980; pp. 65–72.
- Goude, A. Fluid Mechanics of Vertical Axis Turbines—Simulations and Model Development. Ph.D. Thesis, Department of Engineering Sciences, Electricity, Uppsala University, Uppsala, Sweden, 2012. [Google Scholar]
- Sheldahl, R.E.; Klimas, P.C. Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections through 180-degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines; Technical Report SAND80-2114; Sandia National Laboratories: Albuquerque, NM, USA, 1981. [Google Scholar]
- Brochier, G.; Fraunié, P.; Béguier, C.; Paraschivoiu, I. Water channel experiments of dynamic stall on darrieus wind turbine blades. AIAA J. Propuls. Power. 1986, 2, 445–449. [Google Scholar]
- Mandal, A.C.; Burton, J.D. The effects of dynamic stall and flow curvature on the aerodynamics of darrieus turbines applying the cascade model. Wind Eng 1994, 18, 267–282. [Google Scholar]
- Johnston, S.F. Proceedings of the Vertical Axis Wind Turbine (VAWT) Design Technology Seminar for Industry; Technical Report SAND80-0984; Sandia National Laboratories: Albuquerque, NM, USA, 1982. [Google Scholar]
TSR | CN | CT | ||||
---|---|---|---|---|---|---|
LB | Gormont | no DS | LB | Gormont | no DS | |
2.20 | 0.4228 | 0.5006 | 0.4281 | 0.0740 | 0.1211 | 0.0893 |
2.33 | 0.2283 | 0.3143 | 0.2294 | 0.0649 | 0.1166 | 0.0973 |
2.49 | 0.1876 | 0.2574 | 0.1948 | 0.0628 | 0.1080 | 0.0976 |
3.09 | 0.1857 | 0.2243 | 0.1394 | 0.0570 | 0.0914 | 0.0740 |
© 2015 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dyachuk, E.; Goude, A. Simulating Dynamic Stall Effects for Vertical Axis Wind Turbines Applying a Double Multiple Streamtube Model. Energies 2015, 8, 1353-1372. https://doi.org/10.3390/en8021353
Dyachuk E, Goude A. Simulating Dynamic Stall Effects for Vertical Axis Wind Turbines Applying a Double Multiple Streamtube Model. Energies. 2015; 8(2):1353-1372. https://doi.org/10.3390/en8021353
Chicago/Turabian StyleDyachuk, Eduard, and Anders Goude. 2015. "Simulating Dynamic Stall Effects for Vertical Axis Wind Turbines Applying a Double Multiple Streamtube Model" Energies 8, no. 2: 1353-1372. https://doi.org/10.3390/en8021353
APA StyleDyachuk, E., & Goude, A. (2015). Simulating Dynamic Stall Effects for Vertical Axis Wind Turbines Applying a Double Multiple Streamtube Model. Energies, 8(2), 1353-1372. https://doi.org/10.3390/en8021353