Recycle Effect on Device Performance of Wire Mesh Packed Double-Pass Solar Air Heaters
Abstract
:1. Introduction
2. Mathematical Modeling
2.1. Temperature Distributions on Wire Mesh Packed Solar Air Heaters
2.2. Heat Transfer Coefficients of Wire Mesh Packing
2.3. Heat Transfer Coefficients and Collector Efficiency Improvement
Parameters | Operation parameters | Physical properties | |||
---|---|---|---|---|---|
Ac (m2) | 0.09 | (kg/s) | 0.0107, 0.0161, 0.0214 | αP | 0.96 |
H (m) | 0.05 | Tin (°C) | 20, 30, 40 | εσ | 0.94 |
L (m) | 0.3 | Ts (°C) | 20 ± 0.1 | εP | 0.8 |
W (m) | 0.3 | I0 (W/m2) | 830 ± 20, 1100 ± 20 | εR | 0.94 |
l (m) | 0.015 | V (m/s) | 1.0 | τσ | 0.875 |
– | – | ks (W/m·K) | 0.033 |
3. Experimental Procedure
4. Results and Discussion
(kg/s) | R | I0 = 830 (W/m2) | I0 = 1100 (W/m2) | ||
---|---|---|---|---|---|
Flat-plate | Wire mesh | Flat-plate | Wire mesh | ||
ηF | ηW | ηF | ηW | ||
0.0107 | 0.5 | 0.415 | 0.525 | 0.417 | 0.527 |
1 | 0.450 | 0.560 | 0.452 | 0.562 | |
1.5 | 0.476 | 0.586 | 0.478 | 0.588 | |
2 | 0.497 | 0.607 | 0.498 | 0.608 | |
0.0161 | 0.5 | 0.468 | 0.578 | 0.470 | 0.580 |
1 | 0.502 | 0.612 | 0.503 | 0.613 | |
1.5 | 0.526 | 0.636 | 0.527 | 0.637 | |
2 | 0.544 | 0.654 | 0.545 | 0.655 | |
0.0214 | 0.5 | 0.504 | 0.614 | 0.506 | 0.616 |
1 | 0.535 | 0.645 | 0.537 | 0.647 | |
1.5 | 0.558 | 0.668 | 0.558 | 0.668 | |
2 | 0.574 | 0.684 | 0.575 | 0.685 |
Accuracy | ||||
---|---|---|---|---|
Flat-plate | Wire mesh | |||
(kg/s) | 830 | I0 (W/m2) 1100 | 830 | 1100 |
0.0107 | 1.58 | 5.38 | 4.27 | 0.85 |
0.0161 | 5.09 | 5.92 | 9.44 | 5.15 |
0.0214 | 2.50 | 3.56 | 6.64 | 5.75 |
m (kg/s) | R | I0 = 830 (W/m2) | I0 = 1100 (W/m2) | ||
---|---|---|---|---|---|
Flat-plate | Wire mesh | Flat-plate | Wire mesh | ||
IF (%) | IW (%) | IF (%) | IW (%) | ||
0.0107 | 0.5 | 34.19 | 69.79 | 35.44 | 70.60 |
1 | 45.62 | 81.22 | 46.77 | 77.29 | |
1.5 | 54.11 | 89.71 | 55.15 | 86.96 | |
2 | 60.72 | 96.32 | 61.68 | 94.32 | |
0.0161 | 0.5 | 26.56 | 56.29 | 27.44 | 57.25 |
1 | 35.58 | 65.31 | 36.36 | 66.17 | |
1.5 | 42.11 | 71.84 | 42.80 | 72.61 | |
2 | 47.10 | 76.83 | 47.73 | 77.54 | |
0.0214 | 0.5 | 21.79 | 48.36 | 23.97 | 50.94 |
1 | 29.33 | 55.90 | 31.51 | 58.47 | |
1.5 | 34.69 | 61.26 | 36.86 | 63.83 | |
2 | 38.73 | 65.30 | 40.91 | 67.87 |
R | Wire Mesh Packed (HD,W) | Flat-Plate Type (HD,F) | ||||
---|---|---|---|---|---|---|
(kg/s) | (kg/s) | |||||
0.0107 | 0.0161 | 0.0214 | 0.0107 | 0.0161 | 0.0214 | |
0.25 | 1.76 × 10−2 | 5.05 × 10−2 | 1.05 × 10−1 | 7.44 × 10−4 | 2.29 × 10−3 | 5.01 × 10−3 |
0.50 | 1.96 × 10−2 | 5.61 × 10−2 | 1.17 × 10−1 | 8.53 × 10−4 | 2.62 × 10−3 | 5.74 × 10−3 |
0.75 | 2.14 × 10−2 | 6.13 × 10−2 | 1.28 × 10−1 | 9.58 × 10−4 | 2.95 × 10−3 | 6.44 × 10−3 |
1.00 | 2.31× 10−2 | 6.62 × 10−2 | 1.38 × 10−1 | 1.06 × 10−3 | 3.26 × 10−3 | 7.12 × 10−3 |
1.25 | 2.47× 10−2 | 7.08 × 10−2 | 1.47 × 10−1 | 1.16 × 10−3 | 3.56 × 10−3 | 7.78 × 10−3 |
1.50 | 2.63× 10−2 | 7.52 × 10−2 | 1.57 × 10−1 | 1.25 × 10−3 | 3.85 × 10−3 | 8.42 × 10−3 |
1.75 | 2.78× 10−2 | 7.95 × 10−2 | 1.65 × 10−1 | 1.34 × 10−3 | 4.13 × 10−3 | 9.04 × 10−3 |
2.00 | 2.92× 10−2 | 8.35 × 10−2 | 1.74 × 10−1 | 1.43 × 10−3 | 4.41 × 10−3 | 9.65 × 10−3 |
5. Conclusions
Nomenclature
Ac | surface area of the collector = LW (m2) |
AE | surface area of the edge of collector (m2) |
Bi | coefficients defined in Equations (A1)–(A6) |
CP | specific heat of air at constant pressure (J/(kg·K)) |
dW | wire diameter of screen (m) |
D | depth of the bed |
De,0 | equivalent diameter of downward-type single-pass device (m) |
De,a | equivalent diameter of lower subchannel of double-pass device (m) |
De,b | equivalent diameter of upper subchannel of double-pass device (m) |
De,S | equivalent diameter of downward-type single-pass device |
E | deviation of the experimental measurements from theoretical predictions, defined in Equation (20) |
fF,i | Fanning friction factor |
Fi | coefficients defined in Equations (A20)–(A22) |
Gi | coefficients defined in Equations (A9)–(A15) |
H | height of both upper and lower subchannels (m) |
HD,i | The power consumptions for the flat-plate and wire mesh packed, defined in Equations (22) (W) |
ha | convection coefficient between the bottom and lower (W/(m2·K)) |
hb | convection coefficient between the absorber plate and upper (W/(m2·K)) |
hc1–c2 | convection coefficient between the inner glass cover and outer glass cover (W/(m2·K)) |
hr,c1–c2 | radiation heat transfer coefficient between two covers (W/(m2·K)) |
hr,c1–s | radiation heat transfer coefficient from cover 2 to the ambient (W/(m2·K)) |
hr1 | radiation heat transfer coefficient between inner glass cover and absorber plate (W/(m2·K)) |
hr2 | radiation heat transfer coefficient between absorber plate and bottom plate (W/(m2·K)) |
hw | convective heat-transfer coefficient for air flowing over the outside surface of glass cover (W/(m2·K)) |
Ii | coefficients defined in Equations (A23) and (A24) |
IF | percentage of collector efficiency improvement in flat-plate air heater, defined in Equations (18) |
IP,i | percentage of power consumption increment, defined in Equations (26) and (27) |
IW | percentage of collector efficiency improvement in wire mesh air heater, defined in Equations (19) |
k | thermal conductivity of the stainless steel plate (W/(m·K)) |
ki | coefficients defined in Equations (A18) and (A19) |
ks | thermal conductivity of insulator (W/(m·K)) |
L | channel length (m) |
l | the maximum length of the mesh (m) |
ls | thickness of insulator (m) |
lower subchannel friction loss of double-pass device (J/kg) | |
upper subchannel friction loss of double-pass device (J/kg) | |
friction loss of downward-type single-pass device (J/kg) | |
Ma | parameter defined in Equation (A8) (J/(s·m2·K)) |
Mb | parameter defined in Equation (A7) (J/(s·m2·K)) |
total air mass flow rate (kg/s) | |
Nexp | the number of the experimental measurements |
Nu,i | Nusselt number |
n | number of screens in a matrix |
P | porosity of mesh |
Pt | pitch of wire mesh (m) |
Qu | useful energy gained by air (W) |
rh | hydraulic radius (m) |
R | recycle ratio, reverse air mass flow rate divided by input air mass flow rate |
Re0 | Reynolds number, |
Rea | Reynolds number, |
Reb | Reynolds number, |
s | shortway of mesh (m) |
Ta(ξ) | axial fluid temperature distribution in the lower subchannel (K) |
Tb(ξ) | axial fluid temperature distribution in the upper subchannel (K) |
the mixing temperature of the subchannel a at x = 0 (K) | |
Ta,L | the temperature of the lower subchannel at x = L (K) |
Ta,m | the mean temperature of the lower subchannel (K) |
Tb,0 | the temperature of the upper subchannel b at x = 0 (K) |
Tb,L | the temperature of the upper subchannel b at x = L (K) |
Tb,m | the mean temperature of the upper subchannel (K) |
Tb,o | the temperature of the upper subchannel at outlet (K) |
Tin | inlet air temperature (K) |
Tp | temperature of absorbing plate (K) |
Tp,m | mean temperature of absorbing plate (K) |
Ts | ambient temperature (K) |
UB | loss coefficient from the bottom of solar air heater to the ambient environment (W/(m2·K)) |
UE | loss coefficient from the edge of solar air heater to theambient environment (W/(m2·K)) |
UL | overall loss coefficient (W/(m2·K)) |
UT | loss coefficient from the top of solar air heater to the ambient environment (W/(m2·K)) |
V | wind velocity (m/s) |
W | channel width (m) |
Yi | coefficient defined in Equations (A16) and (A17) |
Greek Letters
αP | absorptivity of the absorbing plate |
ηi | collector efficiency for the flat-plate a and wire mesh packed |
ηexp,i | experimental data of collector efficiency |
ηtheo,i | theoretical prediction of collector efficiency |
ηW | collector efficiency of wire mesh solar air heater |
τg | transmittance of glass cover |
εg | emissivity of glass cover |
εR | emissivity of bottom plate |
εP | emissivity of absorbing plate |
ρ | air density (kg/m3) |
μ | air viscosity (kg/(s·m)) |
σ | Stefan-Boltzmann constant (= 5.682 × 10−8) (W/(m2·K4)) |
ξ | dimensionless channel length |
Acknowledgments
Author Contributions
Appendix
Conflicts of Interest
References
- Chen, X.; Yang, H.; Lu, L.; Wang, J.; Liu, W. Experimental studies on a ground coupled heat pump with solar thermal collectors for space heating. Energy 2011, 36, 5292–5300. [Google Scholar] [CrossRef]
- Sharma, V.K.; Colangelo, A.; Spagna, G. Experimental performance of an indirect type solar fruit and vegetable dryer. Energy Convers. Manag. 1993, 34, 293–308. [Google Scholar] [CrossRef]
- Sreekumar, A. Techno-economic analysis of a roof-integrated solar air heating system for drying fruit and vegetables. Energy Convers. Manag. 2010, 51, 2230–2238. [Google Scholar] [CrossRef]
- Bari, E.; Noel, J.Y.; Comini, G.; Cortella, G. Air-cooled condensing systems for home and industrial appliances. Appl. Therm. Eng. 2005, 25, 1446–1458. [Google Scholar] [CrossRef]
- Chen, Z.; Gu, M.; Peng, D.; Peng, C.; Wu, Z. A Numerical study on heat transfer of high efficient solar flat-plate collectors with energy storage. Int. J. Green Energy 2010, 7, 326–336. [Google Scholar] [CrossRef]
- Seluck, M.K. Solar Air Heaters and Their Applications; Sayigh, A.A.M., Ed.; Academic Press: New York, NY, USA, 1977. [Google Scholar]
- Kreith, F.; Kreider, J.F. Principles of Solar Engineering; McGraw-Hill: New York, NY, USA, 1978. [Google Scholar]
- Tan, H.M.; Charters, W.W.S. Experimental investigation of forced-convective heat transfer for fully-developed turbulent flow in a rectangular duct with asymmetric heating. Sol. Energy 1970, 13, 121–125. [Google Scholar] [CrossRef]
- Yeh, H.M. Theory of baffled solar air heaters. Energy 1992, 17, 697–702. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes, 3rd ed.; Wiley: New York, NY, USA, 2006. [Google Scholar]
- Ramadan, M.R.I.; EL-Sebaii, A.A.; Aboul-Enein, S.; El-Bialy, E. Thermal performance of a packed bed double-pass solar air heater. Energy 2007, 32, 1524–1535. [Google Scholar] [CrossRef]
- Sopian, K.; Alghoul, M.A.; Alfegi, E.M.; Sulaiman, M.Y.; Musa, E.A. Evaluation of thermal efficiency of double-pass solar collector with porous—Nonporous media. Renew. Energy 2009, 34, 640–645. [Google Scholar] [CrossRef]
- Dhiman, N.K.; Tiwari, G.N. Performance of a two channel suspended flat plate solar air heater. Energy Convers. Manag. 1984, 24, 269–275. [Google Scholar] [CrossRef]
- Naphon, P. On the performance and entropy generation of the double-pass solar air heater with longitudinal fins. Renew. Energy 2005, 30, 1345–1357. [Google Scholar] [CrossRef]
- Ho, C.D.; Yeh, H.M.; Wang, R.C. Heat-transfer enhancement in double-pass flat-plate solar air heaters with recycle. Energy 2005, 30, 2796–2817. [Google Scholar]
- Chiou, J.P.; El-Wakil, M.M.; Duffie, J.A. A slit-and-expanded aluminum-foil matrix solar collector. Sol. Energy 1965, 9, 73–80. [Google Scholar] [CrossRef]
- Choudhury, C.; Garg, H.P. Performance of air-heating collectors with packed airflow passage. Sol. Energy 1993, 50, 205–221. [Google Scholar] [CrossRef]
- Mittal, M.K.; Varshney, L. Optimal thermohydraulic performance of a wire mesh packed solar air heater. Sol. Energy 2006, 80, 1112–1120. [Google Scholar] [CrossRef]
- Öztürk, H.H.; Demirel, Y. Exergy-based performance analysis of packed-bed solar air heaters. Int. J. Energy Res. 2004, 28, 423–432. [Google Scholar] [CrossRef]
- Kolb, A.; Winter, E.R.F.; Viskanta, R. Experimental studies on a solar air collector with metal matrix absorber. Sol. Energy 1999, 65, 91–98. [Google Scholar] [CrossRef]
- El-Sebaii, A.A.; Aboul-Enein, S.; Ramadan, M.E.I.; Shalaby, S.M.; Moharram, B.M. Investigation of thermal performance of double-pass flat and v-corrugated plate solar air heaters. Energy 2011, 36, 1076–1086. [Google Scholar] [CrossRef]
- Marquart, R.; Blenke, H. Circulation of moderately to highly viscous Newtonian and non-Newtonian liquids in propeller-pumped circulating loop reactors. Int. Chem. Eng. 1980, 20, 368–378. [Google Scholar]
- Dussap, G.; Gros, J.B. Energy consumption and interfacial mass transfer area in an air-lift fermentor. Chem. Eng. J. 1982, 25, 151–162. [Google Scholar] [CrossRef]
- Jones, A.G. Liquid circulation in a drift-tube bubble column. Chem. Eng. Sci. 1985, 40, 449–462. [Google Scholar] [CrossRef]
- Ho, C.D.; Yeh, H.M.; Guo, J.J. An analytical study on the enrichment of heavy water in the continuous thermal diffusion column with external refluxes. Sep. Sci. Technol. 2002, 37, 3129–3153. [Google Scholar] [CrossRef]
- Ho, C.D.; Lin, C.S.; Chuang, Y.C.; Chao, C.C. Performance improvement of wire mesh packed double-pass solar air heaters with external recycle. Renew. Energy 2013, 57, 479–489. [Google Scholar] [CrossRef]
- Varshney, L.; Saini, J.S. Heat transfer and flow friction factor correlations for rectangular solar air heater duct packed with wire mesh screen matrices. Sol. Energy 1998, 62, 255–262. [Google Scholar] [CrossRef]
- Chang, W.S. Porosity and effective thermal conductivity of wire screens. J. Heat Transf. 1990, 112, 5–9. [Google Scholar] [CrossRef]
- Kays, W.M. Convective Heat and Mass Transfer; McGraw-Hill: New York, NY, USA, 1996. [Google Scholar]
- Heaton, H.S.; Reynolds, W.C.; Kays, W.M. Heat transfer in annular passages. Simultaneous development of velocity and temperature fields in laminar flow. Int. J. Heat Mass Transf. 1964, 7, 763–781. [Google Scholar] [CrossRef]
- Saini, R.P.; Saini, J.S. Heat transfer and friction factor correlation for artificially roughened ducts with expanded metal mesh as roughness element. Int. J. Heat Mass Transf. 1997, 40, 973–986. [Google Scholar] [CrossRef]
- Klein, S.A. Calculation of flat-plate loss coefficients. Sol. Energy 1975, 17, 79–80. [Google Scholar] [CrossRef]
- Hottel, H.C.; Woetz, B.B. The performance of flat-plate solar heat collectors. Trans. ASME 1942, 64, 91–104. [Google Scholar]
- McAdams, W.H. Heat Transmission, 3rd ed.; McGraw-Hill: New York, NY, USA, 1954. [Google Scholar]
- Prasad, S.B.; Saini, J.S.; Singh, K.M. Investigation of heat transfer and friction characteristics of packed bed solar air heater using wire mesh as packing material. Sol. Energy 2009, 83, 773–783. [Google Scholar] [CrossRef]
- Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Transport Phenomena, 2nd ed.; Wiley: New York, NY, USA, 2007. [Google Scholar]
- Mohseni-Languri, E.; Taherian, H.; Masoodi, R.; Reisel, J.R. An energy and exergy study of a solar thermal air collector. Therm. Sci. 2009, 13, 205–216. [Google Scholar] [CrossRef]
- Mohseni-Languri, E.; Taherian, H.; Hooman, K.; Reisel, J.R. Enhanced double-pass solar air heater with and without porous medium. Int. J. Green Energy 2011, 8, 643–654. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, C.-D.; Lin, C.-S.; Yang, T.-J.; Chao, C.-C. Recycle Effect on Device Performance of Wire Mesh Packed Double-Pass Solar Air Heaters. Energies 2014, 7, 7568-7585. https://doi.org/10.3390/en7117568
Ho C-D, Lin C-S, Yang T-J, Chao C-C. Recycle Effect on Device Performance of Wire Mesh Packed Double-Pass Solar Air Heaters. Energies. 2014; 7(11):7568-7585. https://doi.org/10.3390/en7117568
Chicago/Turabian StyleHo, Chii-Dong, Chun-Sheng Lin, Tz-Jin Yang, and Chun-Chieh Chao. 2014. "Recycle Effect on Device Performance of Wire Mesh Packed Double-Pass Solar Air Heaters" Energies 7, no. 11: 7568-7585. https://doi.org/10.3390/en7117568
APA StyleHo, C.-D., Lin, C.-S., Yang, T.-J., & Chao, C.-C. (2014). Recycle Effect on Device Performance of Wire Mesh Packed Double-Pass Solar Air Heaters. Energies, 7(11), 7568-7585. https://doi.org/10.3390/en7117568