Development of Clay Tile Coatings for Steep-Sloped Cool Roofs
Abstract
:1. Introduction
2. Motivation and Purpose of the Work
3. Materials and Methods
3.1. Clay Tiles
3.2. Coatings
3.3. Preparation of Samples
Sample code | White basecoat | Experimental coating | |||
---|---|---|---|---|---|
Y (g) | R (g) | B (g) | Opaque binder(g) | ||
N0 | no | - | - | - | - |
N1 | no | - | - | - | 100 |
N1A | no | 3.6 | - | - | 100 |
N1B | no | 7.2 | - | - | 100 |
N1C | no | 7.2 | 0.6 | - | 100 |
N1D | no | 7.2 | 1.4 | - | 100 |
N1E | no | 7.2 | 1.4 | 1.0 | 100 |
N1F | no | 7.2 | 1.4 | 1.6 | 100 |
N1G | no | 11.3 | 1.4 | 1.6 | 100 |
W0 | yes | - | - | - | - |
W1 | yes | - | - | - | 100 |
W1A | yes | 3.6 | - | - | 100 |
W1B | yes | 7.2 | - | - | 100 |
W1C | yes | 7.2 | 0.6 | - | 100 |
W1D | yes | 7.2 | 1.4 | - | 100 |
W1E | yes | 7.2 | 1.4 | 1.0 | 100 |
W1F | yes | 7.2 | 1.4 | 1.6 | 100 |
W1G | yes | 11.3 | 1.4 | 1.6 | 100 |
4. Experimental Procedure
Field of view | 25°/19° | IR resolution | 320 × 240 |
Minimum focus distance | 0.4 | Spectral range | 7.5 ÷ 13 μm |
Thermal sensitivity | 0.06 °C | Object temperature range | −20 °C to +120 °C |
Detector type | focal plane array | Accuracy | ±2% of reading |
Spectral bandwidth | UV/VIS: 0.1–8 nm (8 steps) NIR: 0.2–32 nm (10 steps) | IR resolution | 320 × 240 |
Spectrum interval | 240 ÷ 2600 nm | Noise | <0.0002 Abs (500 nm, SBW 8 nm), <0.00005 Abs (1500 nm, SBW 8 nm) determined under conditions of RMS value at 0 Abs and 1 s response |
Resolution | 0.1 nm | Photometric range | −6 to 6 Abs |
Wavelength accuracy | UV/VIS: ±0.2 nm, NIR: ±0.8 nm | Accuracy | ±2% of reading |
Wavelength repeatability | UV/VIS: ±0.08 nm, NIR: ±0.32 nm |
5. Results and Discussion
5.1. Visual Appearance of the Samples
- -
- Yellow pigment: W1A, N1A, W1B, N1B samples;
- -
- Red pigment: W1C, N1C, W1D, N1D samples;
- -
- Brown pigment: W1E, N1E, W1F, N1F, W1G, N1G samples.
5.2. Infrared Thermography
5.3. Solar Reflectance Spectra
Sample codenames | RUV Reflactance (%) | RVISIBLE Reflectance (%) | RNIR Reflectance (%) | RSOLAR (R) Reflectance (%) | IR emittance Emittance (%) |
---|---|---|---|---|---|
300–380 nm | 380.5–780 nm | 781–2500 nm | 300–2500 nm | ||
N0 | 8.8 | 31.1 | 65.9 | 45 1 | 0.88 |
N1 | 8.5 | 85.2 | 86.2 | 83 | 0.89 |
N1A | 8.7 | 69.7 | 84.2 | 74 | 0.89 |
N1B | 8.0 | 67.8 | 83.9 | 73 | 0.90 |
N1C | 7.9 | 58.5 | 79.6 | 66 | 0.89 |
N1D | 7.5 | 52.1 | 76.9 | 61 | 0.90 |
N1E | 7.7 | 48.5 | 73.3 | 58 | 0.90 |
N1F | 7.1 | 45.2 | 70.3 | 55 | 0.90 |
N1G | 6.7 | 43.4 | 69.1 | 53 | 0.90 |
W0 | 45.3 | 74.1 | 82.8 | 77 2 | 0.90 |
W1 | 8.6 | 88.6 | 89.9 | 87 | 0.89 |
W1A | 9.1 | 73.7 | 86.8 | 77 | 0.89 |
W1B | 7.9 | 67.5 | 83.8 | 73 | 0.89 |
W1C | 8.1 | 59.1 | 81.8 | 67 | 0.88 |
W1D | 8.2 | 52.3 | 77.2 | 62 | 0.88 |
W1E | 7.7 | 48.4 | 73.1 | 58 | 0.88 |
W1F | 7.6 | 46.8 | 72.0 | 56 | 0.89 |
W1G | 7.3 | 44.7 | 71.0 | 55 | 0.88 |
5.3.1. Effect of the Binder
5.3.2. Effect of the Colored Coatings
5.3.3. Effect of the White Engobe Basecoat
6. Concluding Remarks and Perspectives
Acknowledgments
Conflict of Interest
References
- Synnefa, A.; Saliari, M.; Santamouris, M. Experimental and numerical assessment of the impact of increased roof reflectance on a school building in Athens. Energy Build. 2012, 55, 7–15. [Google Scholar] [CrossRef]
- Santamouris, M.; Synnefa, A.; Karlessi, T. Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Sol. Energy 2011, 85, 3085–3102. [Google Scholar] [CrossRef]
- Akbari, H.; Konopacki, S. Energy effects of heat-island reduction strategies in Toronto, Canada. Energy 2004, 29, 191–210. [Google Scholar] [CrossRef]
- Oke, T.R.; Johnson, D.G.; Steyn, D.G.; Watson, I.D. Simulation of surface urban heat island under “ideal” conditions at night—Part 2: Diagnosis and causation. Bound. Layer Meteorol. 1991, 56, 339–358. [Google Scholar] [CrossRef]
- Synnefa, A.; Santamouris, M. Advances on technical, policy and market aspects of cool roof technology in Europe: The Cool Roofs project. Energy Build. 2012, 55, 35–41. [Google Scholar] [CrossRef]
- Synnefa, A.; Santamouris, M.; Apostolakis, K. On the development, optical properties and thermal performance of cool colored coatings for the urban environment. Sol. Energy 2007, 81, 488–497. [Google Scholar] [CrossRef]
- Bozonnet, E.; Doya, M.; Allard, F. Cool roofs impact on building thermal response: A French case study. Energy Build. 2011, 43, 3006–3012. [Google Scholar] [CrossRef]
- Zinzi, M.; Agnoli, S. Cool and green roofs. An energy and comfort comparison between passive cooling and mitigation urban heat island techniques for residential buildings in the Mediterranean region. Energy Build. 2012, 55, 66–76. [Google Scholar] [CrossRef]
- Pisello, A.L.; Cotana, F. The thermal effect of an innovative cool roof on residential buildings in Italy: Results from two years of continuous monitoring. Energy Build. 2013. submitted for publication. [Google Scholar]
- Libbra, A.; Tarozzi, L.; Muscio, A.; Corticelli, M.A. Spectral response data for development of cool coloured tile coverings. Opt. Laser Technol. 2011, 43, 394–400. [Google Scholar] [CrossRef]
- Synnefa, A.; Santamouris, M.; Akbari, H. Estimating the effect of using cool coatings on energy loads and thermal comfort in residential buildings in various climatic conditions. Energy Build. 2007, 39, 1167–1174. [Google Scholar] [CrossRef]
- Santamouris, M.; Papanikolaou, N.; Livada, I.; Koronakis, I.; Georgakis, C.; Argiriou, A.; Assimakopoulos, D.N. On the impact of urban climate to the energy consumption of buildings. Sol. Energy 2001, 70, 201–216. [Google Scholar] [CrossRef]
- Pisello, A.L.; Bobker, M.; Cotana, F. A building energy efficiency optimization method by evaluating the effective thermal zones occupancy. Energies 2012, 5, 5257–5278. [Google Scholar] [CrossRef]
- Pisello, A.L.; Rossi, F.; Cotana, F. On the Impact of Cool Roofs in Italian Residential Buildings: Experimental Assessment of Summer and Winter Performance. In Proceedings of SEBUA-12 ICHMT International Symposium on Sustainable Energy in Buildings and Urban Areas, Kusadasi, Turkey, 14–20 July 2012.
- Libbra, A.; Muscio, A.; Siligardi, C.; Tartarini, P. Assessment and improvement of the performance of antisolar surfaces and coatings. Prog. Org. Coat. 2012, 72, 73–80. [Google Scholar] [CrossRef]
- Asdrubali, F.; Cotana, F.; Messineo, A. On the evaluation of solar greenhouse efficiency in building simulation during the heating period. Energies 2012, 5, 1864–1880. [Google Scholar] [CrossRef]
- Buratti, C.; Moretti, E. Lighting and energetic characteristics of transparent insulating materials: Experimental data and calculation. Indoor Built. Environ. 2011, 20, 400–411. [Google Scholar] [CrossRef]
- Lai, C.M.; Wang, Y.H. Energy-saving potential of building envelope designs in residential houses in Taiwan. Energies 2011, 4, 2061–2076. [Google Scholar] [CrossRef]
- Berardi, U.; Albino, V. Green buildings and organizational changes in Italian case studies. Bus. Strategy Environ. 2012, 21, 387–400. [Google Scholar] [CrossRef]
- Pisello, A.L.; Goretti, M.; Cotana, F. A method for assessing buildings’ energy efficiency by dynamic simulation and experimental activity. Appl. Energy 2012, 97, 419–429. [Google Scholar] [CrossRef]
- Pisello, A.L.; Taylor, J.E.; Xu, X.; Cotana, F. Inter-building effect: Simulating the impact of a network of buildings on the accuracy of building energy performance predictions. Build. Environ. 2012, 58, 37–45. [Google Scholar] [CrossRef]
- Xu, X.; Taylor, J.E.; Pisello, A.L.; Culligan, P. The impact of place-based affiliation networks on energy conservation: An holistic model that integrates the influence of buildings, residents and the neighborhood context. Energy Build. 2012, 55, 637–646. [Google Scholar] [CrossRef]
- Xu, X.; Pisello, A.L.; Taylor, J.E. Simulating the Impact of Building Occupant Peer Networks on Inter-Building Energy Consumption. In Proceedings of the 2011 Winter Simulation Conference, Phoenix, AZ, USA, 11–14 December 2011; pp. 3373–3382. [CrossRef]
- Santamouris, M. Heat island research in Europe—The state of the art. J. Adv. Build. Energy Res. 2007, 1, 123–150. [Google Scholar] [CrossRef]
- Levinson, R.; Berdahl, P.; Akbari, H. Solar spectral optical properties of pigments—Part II: Survey of common colorants. Sol. Energy Mater. Sol. Cells 2005, 89, 351–389. [Google Scholar] [CrossRef]
- Ferrari, C.; Libbra, A.; Muscio, A.; Siligardi, C. Energy performance of opaque building elements in summer: Analysis of a simplified calculation method in force in Italy. Energy Build. 2013, 64, 384–394. [Google Scholar] [CrossRef]
- Levinson, R.; Akbari, H.; Reilly, J.C. Cooler tile-roofed buildings with near-infrared-reflective non-white coatings. Build. Environ. 2007, 42, 2591–2605. [Google Scholar] [CrossRef]
- Kolokotsa, D.; Maravelaki-Kalaitzaki, P.; Papantoniou, S.; Vangeloglou, E.; Saliari, M.; Karlessi, T.; Santamouris, M. Development and analysis of mineral based coatings for buildings and urban structures. Sol. Energy 2012, 86, 1648–1659. [Google Scholar] [CrossRef]
- Dall’O’, G.; Speccher, A.; Bruni, E. The green energy audit, a new procedure for the sustainable auditing of existing buildings integrated with the Leed protocols. Sustain. Cities Soc. 2012, 3, 54–65. [Google Scholar] [CrossRef]
- Cotana, F.; Rossi, F.; Nicolini, A. Evaluation and optimization of an innovative low-cost photovoltaic solar concentrator. Int. J. Photoenergy 2011, 2011. [Google Scholar] [CrossRef]
- Rossi, F.; Nicolini, A. Ethanol reforming for supplying molten carbonate fuel cells. Int. J. Low-Carbon Technol. 2013, 8, 140–145. [Google Scholar] [CrossRef]
- Bettoni, M.; Brinchi, L.; Del Giacco, T.; Germani, R.; Meniconi, S.; Rol, C.; Sebastiani, G.V. Surfactant effect on titanium dioxide photosensitized oxidation of 4-dodecyloxybenzyl alcohol. J. Photochem. Photobiol. A 2012, 229, 53–59. [Google Scholar] [CrossRef]
- Bikiaris, D.; Daniilia, S.; Sotiropoulou, S.; Katsimbiri, O.; Pavlidou, E.; Moutsatsou, A.P.; Chryssoulakis, Y. Ochre-differentiation through micro-Raman and micro-FTIR spectroscopis: Application on wall paintings at Meteora and Mount Athos, Greece. Spectrochim. Acta A 2000, 56, 3–18. [Google Scholar] [CrossRef]
- Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres; ASTM E903-96; American Society for Testing and Materials: West Conshohocken, PA, USA, 1996.
- Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface; ASTM G173-03; American Society for Testing and Materials: West Conshohocken, PA, USA, 2012.
- Standard Test Method for Determination of Emittance of Materials Near Room Temperature Using Portable Emissometers; ASTM C1371-04a; American Society for Testing and Materials: West Conshohocken, PA, USA, 2010.
- Brinchi, L.; Germani, R.; Savelli, G.; di Michele, A.; Onori, G. Premicelles of cetyltrimethylammonium methanesulfonate: Spectroscopic and kinetic evidence. Coll. Surf. A 2009, 336, 75–78. [Google Scholar] [CrossRef]
- Di Michele, A.; Germani, R.; Pastori, G.; Spreti, N.; Brinchi, L. Effects of temperature on micellar-assisted bimolecular reaction of methylnaphthalne-2-sulphonate with bromide and chloride ions. J. Colloid Interface Sci. 2013, 402, 165–172. [Google Scholar] [CrossRef] [PubMed]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Pisello, A.L.; Cotana, F.; Nicolini, A.; Brinchi, L. Development of Clay Tile Coatings for Steep-Sloped Cool Roofs. Energies 2013, 6, 3637-3653. https://doi.org/10.3390/en6083637
Pisello AL, Cotana F, Nicolini A, Brinchi L. Development of Clay Tile Coatings for Steep-Sloped Cool Roofs. Energies. 2013; 6(8):3637-3653. https://doi.org/10.3390/en6083637
Chicago/Turabian StylePisello, Anna Laura, Franco Cotana, Andrea Nicolini, and Lucia Brinchi. 2013. "Development of Clay Tile Coatings for Steep-Sloped Cool Roofs" Energies 6, no. 8: 3637-3653. https://doi.org/10.3390/en6083637