Next Article in Journal / Special Issue
Intake Manifold Boosting of Turbocharged Spark-Ignited Engines
Previous Article in Journal
Preparation and Doping Mode of Doped LiMn2O4 for Li-Ion Batteries
Article Menu

Export Article

Open AccessArticle
Energies 2013, 6(3), 1731-1745;

Experimental Investigation on the Performance of a Compressed-Air Driven Piston Engine

Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
Author to whom correspondence should be addressed.
Received: 3 December 2012 / Revised: 7 March 2013 / Accepted: 8 March 2013 / Published: 12 March 2013
Full-Text   |   PDF [1548 KB, uploaded 17 March 2015]   |  


This study presents an experimental investigation of a piston engine driven by compressed air. The compressed air engine was a modified 100 cm3 internal combustion engine obtained from a motorcycle manufacturer. The experiments in this study used a test bench to examine the power performance and pressure/temperature variations of the compressed air engine at pressures ranging from 5 to 9 bar (absolute pressure). The engine was modified from a 4-stroke to a 2-stroke engine using a cam system driven by a crankshaft and the intake and exhaust valves have a small lift due to this modification. The highest power output of 0.95 kW was obtained at 9 bar and 1320 rpm. The highest torque of 9.99 N·m occurred at the same pressure, but at 465 rpm. The pressure-volume (P-V) diagram shows that cylinder pressure gradually increases after the intake valve opens because of the limited lift movement of the intake valve. Similar situations occurred during the exhaust process, restricting the power output of the compressed air engine. The pressure and temperature variation of the air at engine inlet and outlet were recorded during the experiment. The outlet pressure increased from 1.5 bar at 500 rpm to 2.25 bar at 2000 rpm, showing the potential of recycling the compressed air energy by attaching additional cylinders (split-cycle engine). A temperature decrease (from room temperature to 17 °C) inside the cylinder was observed. It should be noted that pressures higher than that currently employed can result in lower temperatures and this can cause poor lubrication and sealing issues. The current design of a compressed air engine, which uses a conventional cam mechanism for intake and exhaust, has limited lift movement during operation, and has a restricted flow rate and power output. Fast valve actuation and a large lift are essential for improving the performance of the current compressed air engine. This study presents a power output examination with the pressure and temperature measurements of a piston-type compressed air engine to be installed in compact vehicles as the main or auxiliary power system. View Full-Text
Keywords: compressed air engine; experimental investigation; power performance; pressure; temperature compressed air engine; experimental investigation; power performance; pressure; temperature

Figure 1

This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Share & Cite This Article

MDPI and ACS Style

Huang, C.-Y.; Hu, C.-K.; Yu, C.-J.; Sung, C.-K. Experimental Investigation on the Performance of a Compressed-Air Driven Piston Engine. Energies 2013, 6, 1731-1745.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Energies EISSN 1996-1073 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top