Performance Analysis of a District Heating System
Abstract
:1. Introduction
2. Methodology
2.1. Network Description
2.2. Energetic Analysis
2.2.1. Differential Energy Equation for a Control Volume in Pipe
2.2.2. Pumping Power and Heat Losses
2.3. Exergetic Analysis
2.3.1. Reference State
2.3.2. Boundaries on Supply and Return Lines
- Boundary I includes just the supply and return pipeline, or
- Boundary II is located outside the system where the temperature corresponds to the ambient temperature, considered here as the temperature of the reference environment T0.
2.4. Consideration of Return Pipes
3. Case Study
3.1. District Heating of Šaleška Valley
Vertex | v2 | v5 | v8 | v10 | v14 | v15 | v21 | v25 | v27 | v28 |
, MW | 8.50 | 3.77 | 2.34 | 2.28 | 1.25 | 1.24 | 0.08 | 0.23 | 0.08 | 0.20 |
Vertex | v29 | v30 | v32 | v34 | v35 | v36 | v38 | v39 | v40 | – |
, MW | 0.07 | 0.37 | 0.11 | 0.09 | 0.20 | 0.05 | 0.38 | 0.59 | 0.37 | – |
Edge | d, mm | L, m | U, W/m2K | Tsur, °C | Edge | d, mm | L, m | U, W/m2K | Tsur, °C | Edge | d, mm | L, m | U, W/m2K | Tsur, °C |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
e1 | 350 | 455 | 0.64 | 0.2 | e14 | 150 | 168 | 1.02 | 8.2 | e27 | 65 | 1068 | 1.53 | 8.2 |
e2 | 350 | 445 | 0.64 | 0.2 | e15 | 125 | 292 | 1.12 | 8.2 | e28 | 40 | 220 | 1.94 | 8.2 |
e3 | 250 | 626 | 0.78 | 0.2 | e16 | 125 | 72 | 1.12 | 8.2 | e29 | 80 | 323 | 1.38 | 8.2 |
e4 | 250 | 55 | 0.78 | 0.2 | e17 | 80 | 184 | 1.38 | 8.2 | e30 | 60 | 120 | 1.59 | 8.2 |
e5 | 200 | 630 | 0.88 | 8.2 | e18 | 76 | 134 | 1.42 | 8.2 | e31 | 48 | 600 | 1.77 | 8.2 |
e6 | 200 | 259 | 0.88 | 8.2 | e19 | 60 | 377 | 1.59 | 8.2 | e32 | 76 | 211 | 1.42 | 8.2 |
e7 | 200 | 253 | 0.88 | 8.2 | e20 | 42 | 368 | 1.89 | 8.2 | e33 | 42 | 37 | 1.89 | 8.2 |
e8 | 200 | 321 | 0.88 | 8.2 | e21 | 150 | 96 | 1.02 | 8.2 | e34 | 60 | 438 | 1.59 | 8.2 |
e9 | 200 | 510 | 0.88 | 8.2 | e22 | 114 | 181 | 1.17 | 8.2 | e35 | 32 | 212 | 2.18 | 8.2 |
e10 | 150 | 46 | 1.02 | 8.2 | e23 | 125 | 58 | 1.12 | 8.2 | e36 | 250 | 191 | 0.78 | 8.2 |
e11 | 150 | 115 | 1.02 | 8.2 | e24 | 65 | 122 | 1.53 | 8.2 | e37 | 80 | 159 | 1.38 | 8.2 |
e12 | 150 | 216 | 1.02 | 8.2 | e25 | 60 | 255 | 1.59 | 8.2 | e38 | 100 | 515 | 1.24 | 8.2 |
e13 | 150 | 267 | 1.02 | 8.2 | e26 | 42 | 309 | 1.89 | 8.2 | e39 | 80 | 243 | 1.38 | 8.2 |
3.2. Results and Discussion
Vertex | Existing stationary situation (Tsup,v1 = 126.5 °C) | Optimal supply temperature (Tsup,v1 = 100.5 °C) | Optimal pipe diameters (Tsup,v1 = 126.5 °C) | Optimal DN capacity (Tsup,v1 = 126.5 °C) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TW, °C | η | ε | yDL | TW, °C | η | ε | yDL | dsup, mm | dret, mm | TW, °C | η | ε | yDL | TW, °C | η | ε | yDL | ||
v2 | 126.3 | 0.99 | 0.99 | 0.01 | 100.4 | 0.99 | 0.99 | 0.09 | 216 | 259 | 126.3 | 0.99 | 0.99 | 0.08 | 33.3 | 126.4 | 1.00 | 1.00 | 0.50 |
v5 | 125.4 | 0.97 | 0.96 | 0.01 | 100.1 | 0.97 | 0.97 | 0.09 | 139 | 167 | 125.7 | 0.97 | 0.97 | 0.09 | 17.7 | 126.3 | 0.99 | 0.99 | 0.51 |
v8 | 123.9 | 0.92 | 0.92 | 0.01 | 99.5 | 0.93 | 0.93 | 0.07 | 110 | 134 | 124.6 | 0.94 | 0.93 | 0.10 | 11.2 | 126.0 | 0.98 | 0.97 | 0.51 |
v10 | 122.8 | 0.89 | 0.88 | 0.01 | 99.1 | 0.90 | 0.90 | 0.07 | 109 | 134 | 123.8 | 0.91 | 0.90 | 0.10 | 11.2 | 125.8 | 0.97 | 0.96 | 0.51 |
v14 | 121.5 | 0.85 | 0.85 | 0.01 | 98.5 | 0.87 | 0.86 | 0.06 | 80 | 99 | 122.9 | 0.88 | 0.87 | 0.10 | 6.4 | 125.5 | 0.97 | 0.95 | 0.52 |
v15 | 121.1 | 0.84 | 0.84 | 0.01 | 98.4 | 0.86 | 0.85 | 0.06 | 80 | 99 | 122.6 | 0.88 | 0.86 | 0.11 | 6.4 | 125.5 | 0.96 | 0.94 | 0.52 |
v21 | 111.2 | 0.60 | 0.58 | 0.01 | 94.2 | 0.63 | 0.62 | 0.05 | 21 | 27 | 115.1 | 0.67 | 0.64 | 0.11 | 0.5 | 123.7 | 0.90 | 0.85 | 0.54 |
v25 | 120.3 | 0.82 | 0.81 | 0.01 | 98.1 | 0.84 | 0.83 | 0.06 | 34 | 42 | 122.0 | 0.86 | 0.84 | 0.11 | 1.3 | 125.3 | 0.96 | 0.94 | 0.52 |
v27 | 114.4 | 0.67 | 0.66 | 0.01 | 95.6 | 0.70 | 0.69 | 0.05 | 21 | 27 | 117.6 | 0.73 | 0.70 | 0.11 | 0.5 | 124.3 | 0.92 | 0.88 | 0.53 |
v28 | 114.0 | 0.66 | 0.65 | 0.01 | 95.4 | 0.69 | 0.68 | 0.05 | 33 | 42 | 117.3 | 0.73 | 0.70 | 0.11 | 1.3 | 124.2 | 0.92 | 0.88 | 0.54 |
v29 | 111.1 | 0.60 | 0.58 | 0.01 | 94.1 | 0.63 | 0.61 | 0.05 | 19 | 26 | 115.0 | 0.67 | 0.63 | 0.11 | 0.5 | 123.7 | 0.90 | 0.85 | 0.55 |
v30 | 121.2 | 0.85 | 0.84 | 0.01 | 98.4 | 0.86 | 0.86 | 0.06 | 43 | 53 | 122.6 | 0.88 | 0.86 | 0.10 | 1.9 | 125.5 | 0.96 | 0.94 | 0.52 |
v32 | 114.0 | 0.66 | 0.65 | 0.01 | 95.4 | 0.69 | 0.68 | 0.05 | 24 | 31 | 117.2 | 0.72 | 0.70 | 0.11 | 0.7 | 124.3 | 0.92 | 0.88 | 0.54 |
v34 | 119.6 | 0.80 | 0.79 | 0.01 | 97.8 | 0.82 | 0.81 | 0.06 | 22 | 27 | 121.5 | 0.84 | 0.82 | 0.10 | 0.5 | 125.2 | 0.95 | 0.93 | 0.52 |
v35 | 120.4 | 0.83 | 0.82 | 0.01 | 98.1 | 0.85 | 0.84 | 0.06 | 32 | 39 | 122.1 | 0.86 | 0.84 | 0.10 | 1.1 | 125.4 | 0.96 | 0.94 | 0.52 |
v36 | 116.3 | 0.72 | 0.71 | 0.01 | 96.4 | 0.75 | 0.73 | 0.05 | 17 | 21 | 118.8 | 0.77 | 0.75 | 0.09 | 0.3 | 124.7 | 0.94 | 0.90 | 0.53 |
v38 | 124.4 | 0.94 | 0.93 | 0.01 | 99.7 | 0.94 | 0.94 | 0.07 | 43 | 52 | 124.9 | 0.95 | 0.94 | 0.10 | 1.9 | 126.1 | 0.98 | 0.98 | 0.51 |
v39 | 124.3 | 0.93 | 0.93 | 0.01 | 99.7 | 0.94 | 0.94 | 0.05 | 55 | 65 | 124.9 | 0.95 | 0.94 | 0.10 | 3.0 | 126.1 | 0.99 | 0.98 | 0.51 |
v40 | 123.0 | 0.90 | 0.89 | 0.01 | 99.2 | 0.91 | 0.91 | 0.05 | 43 | 52 | 124.0 | 0.92 | 0.91 | 0.10 | 1.9 | 125.9 | 0.98 | 0.97 | 0.51 |
4. Conclusions
Nomenclature
cp | specific heat at constant pressure, J/(kgK) |
d | internal diameter, m |
e | specific exergy, J/kg |
exergy rate, W | |
energy rate, W | |
f | friction factor |
h | specific enthalpy, J/kg |
L | length, m |
mass flow rate, kg/s | |
o | pipe circumference, m |
p | pressure, bar |
specific heat rate, W/m | |
heat rate, W | |
S | specific entropy, J/(kgK) |
T | temperature, °C or K |
U | overall heat transfer coefficient, W/(m2K) |
v | water velocity, m/s |
specific pumping power, W/m | |
yDL | exergy destruction to loss ratio |
pumping power, W |
Greek Symbols
exergetic efficiency | |
energetic efficiency | |
density, kg/m3 |
Subscripts and Superscripts
0 | environment (reference state) |
D | destruction |
F | fuel |
i | in |
L | loss |
o | out |
P | product |
PE | positive effect |
RE | resource expended |
ret | return |
sup | supply |
sur | surroundings |
w | water |
References
- Bejan, A.; Tsatsaronis, G.; Moran, M.J. Thermal Design and Optimization; Wiley-Interscience: New York, NY, USA, 1996. [Google Scholar]
- Yildiz, A.; Güngör, A. Energy and exergy analyses of space heating in buildings. Appl. Energy 2009, 86, 1939–1948. [Google Scholar] [CrossRef]
- Hepbasli, A. Low exergy (LowEx) heating and cooling systems for sustainable buildings and societies. Renew. Sustain. Energy Rev. 2012, 16, 73–104. [Google Scholar] [CrossRef]
- Sakulpipatsin, P.; Itard, L.C. M.; van der Kooi, H.J.; Boelman, E.C.; Luscuere, P.G. An exergy application for analysis of buildings and HVAC systems. Energy Build. 2010, 42, 90–99. [Google Scholar] [CrossRef]
- Balta, M.T.; Dincer, I.; Hepbasli, A. Performance and sustainability assessment of energy options for building HVAC applications. Energy Build. 2010, 42, 1320–1328. [Google Scholar] [CrossRef]
- Balta, M.T.; Kalinci, Y.; Hepbasli, A. Evaluating a low exergy heating system from the power plant through the heat pump to the building envelope. Energy Build. 2008, 40, 1799–1804. [Google Scholar] [CrossRef]
- Meggers, F.; Ritter, V.; Goffin, P.; Baetschmann, M.; Leibundgut, H. Low exergy building systems implementation. Energy 2011, 41, 48–55. [Google Scholar] [CrossRef]
- Lohani, S.; Schmidt, D. Comparison of energy and exergy analysis of fossil plant, ground and air source heat pump building heating system. Renew. Energy 2010, 35, 1275–1282. [Google Scholar] [CrossRef]
- Lee, K.C. Classification of geothermal resources by exergy. Geothermics 2001, 30, 431–442. [Google Scholar] [CrossRef]
- Torío, H.; Schmidt, D. Framework for analysis of solar energy systems in the built environment from an exergy perspective. Renew. Energy 2010, 35, 2689–2697. [Google Scholar] [CrossRef]
- Feidt, M.; Costea, M. Energy and exergy analysis and optimization of combined heat and power systems. comparison of various systems. Energies 2012, 5, 3701–3722. [Google Scholar] [CrossRef]
- Reverberi, A.; Borghi, A.D.; Dovì, V. Optimal design of cogeneration systems in industrial plants combined with district heating/cooling and underground thermal energy storage. Energies 2011, 4, 2151–2165. [Google Scholar] [CrossRef]
- Çomaklı, K.; Yüksel, B.; Çomaklı, Ö. Evaluation of energy and exergy losses in district heating network. Appl. Therm. Eng. 2004, 24, 1009–1017. [Google Scholar] [CrossRef]
- Ozgener, L.; Hepbasli, A.; Dincer, I. Energy and exergy analysis of geothermal district heating systems: An application. Build. Environ. 2005, 40, 1309–1322. [Google Scholar] [CrossRef]
- Ozgener, L.; Hepbasli, A.; Dincer, I. Exergy analysis of two geothermal district heating systems for building applications. Energy Convers. Manag. 2007, 48, 1185–1192. [Google Scholar] [CrossRef]
- Keçebaş, A.; Kayfeci, M.; Gedik, E. Performance investigation of the Afyon geothermal district heating system for building applications: Exergy analysis. Appl. Therm. Eng. 2011, 31, 1229–1237. [Google Scholar] [CrossRef]
- Yüksel, B.; Aslan, A.; Akyol, T. Investigation of seasonal variations in the energy and exergy performance of the Gonen geothermal district heating system. Appl. Therm. Eng. 2012, 36, 39–50. [Google Scholar] [CrossRef]
- Li, H.; Svendsen, S. Energy and exergy analysis of low temperature district heating network. Energy 2012, 45, 237–246. [Google Scholar] [CrossRef]
- Poredoš, A.; Kitanovski, A. Exergy loss as a basis for the price of thermal energy. Energy Convers. Manag. 2002, 43, 2163–2173. [Google Scholar] [CrossRef]
- Torío, H.; Schmidt, D. Development of system concepts for improving the performance of a waste heat district heating network with exergy analysis. Energy Build. 2010, 42, 1601–1609. [Google Scholar] [CrossRef]
- Hepbasli, A. A review on energetic, exergetic and exergoeconomic aspects of geothermal district heating systems (GDHSs). Energy Convers. Manag. 2010, 51, 2041–2061. [Google Scholar] [CrossRef]
- Voloshin, V.I. Introduction to Graph Theory; Nova Science Publishers: New York, NY, USA, 2009. [Google Scholar]
- Munson, B.R.; Young, D.F.; Okiishi, T.H. Dimensional analysis of pipe flow. In Fundamentals of Fluid Mechanics; Fowley, D., Ed.; Wiley: New York, NY, USA, 1998; Volume 3, p. 410. [Google Scholar]
- Incropera, F.P.; Bergman, T.L.; Lavine, A.S.; de Witt, D.P. Fundamentals of Heat and Mass Transfer; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Tsatsaronis, G. Definitions and nomenclature in exergy analysis and exergoeconomics. Energy 2007, 32, 249–253. [Google Scholar] [CrossRef]
- Morosuk, T.; Tsatsaronis, G. Graphical models for splitting physical exergy. In Shaping Our Future Energy Systems, Proceedings of the 18th International Conference on Efficiency, Cost, Optimization, Simulation, and Environmental Impact of Energy Systems (ECOS), Trondheim, Norway, 20–22 June 2005; pp. 377–384.
- Medved, M.; Ristovic, I.; Roser, J.; Vulic, M. An overview of two years of continuous energy optimization at the velenje coal mine. Energies 2012, 5, 2017–2029. [Google Scholar] [CrossRef]
- Ljubenko, A.; Poredoš, A. Energy efficiency of a district heating system and its possible improvements. In Proceedings of 24th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Novi Sad, Serbia, 4–7 July 2011; pp. 2935–2944.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ljubenko, A.; Poredoš, A.; Morosuk, T.; Tsatsaronis, G. Performance Analysis of a District Heating System. Energies 2013, 6, 1298-1313. https://doi.org/10.3390/en6031298
Ljubenko A, Poredoš A, Morosuk T, Tsatsaronis G. Performance Analysis of a District Heating System. Energies. 2013; 6(3):1298-1313. https://doi.org/10.3390/en6031298
Chicago/Turabian StyleLjubenko, Andrej, Alojz Poredoš, Tatiana Morosuk, and George Tsatsaronis. 2013. "Performance Analysis of a District Heating System" Energies 6, no. 3: 1298-1313. https://doi.org/10.3390/en6031298
APA StyleLjubenko, A., Poredoš, A., Morosuk, T., & Tsatsaronis, G. (2013). Performance Analysis of a District Heating System. Energies, 6(3), 1298-1313. https://doi.org/10.3390/en6031298