A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty
Abstract
:1. Introduction
2. Deterministic Optimization Modeling
2.1. Optimization of Energy Systems Planning
2.2. Optimization of GHG Emission Mitigation
3. Inexact Optimization Modeling
3.1. Fuzzy Mathematical Programming
3.2. Stochastic Mathematical Programming
3.3. Interval Mathematical Programming
4. Model-Based Decision Support Tools
5. Discussions and Conclusions
Acknowledgements
References
- Amin, S.M.; Gellings, C.W. The North American power delivery system: Balancing market restructuring and environmental economics with infrastructure security. Energy 2006, 31, 967–999. [Google Scholar] [CrossRef]
- Muñoz, J.R.; Sailor, D.J. A modelling methodology for assessing the impact of climate variability and climatic change on hydroelectric generation. Energy Convers. Manag. 1999, 39, 1459–1469. [Google Scholar] [CrossRef]
- Akisawa, A.; Kang, Y.T.; Shimazaki, Y.; Kashiwagi, T. Environmentally friendly energy system models using material circulation and energy cascade-the optimization work. Energy 1999, 24, 561–578. [Google Scholar] [CrossRef]
- Marechal, F.; Favrat, D.; Jochem, E. Energy in the perspective of the sustainable development: The 2000W society challenge. Resour. Conserv. Recycl. 2005, 44, 245–262. [Google Scholar] [CrossRef]
- Turtona, H.; Barreto, L. Long-term security of energy supply and climate change. Energy Policy 2006, 34, 2232–2250. [Google Scholar] [CrossRef]
- Spiegel, R.J.; Kern, E.C., Jr.; Greenberg, D.L. Demonstration of the environmental and demand-side management benefits of grid-connected photovoltaic power systems. Sol. Energy 1998, 62, 345–358. [Google Scholar] [CrossRef]
- USEPA. Energy Strategy for the Road Ahead, 2007. Available online: http://www.energystar.gov/ia/business/GBN_Energy_Strategy.pdf (accessed on 9 August 2009).
- Transport Canada. The Region of Waterloo: Central Transit Corridor Express Project; Transport Canada: Ottawa, Canada, 2003. [Google Scholar]
- Cai, Y.P.; Huang, G.H.; Yang, Z.F.; Lin, Q.G.; Tan, Q. Community-scale renewable energy systems planning under uncertainty—An interval chance-constrained programming approach. Renew. Sustain. Energy Rev. 2009, 13, 721–735. [Google Scholar] [CrossRef]
- Cai, Y.P.; Huang, G.H.; Lin, Q.G.; Nie, X.H.; Tan, Q. An optimization-model-based interactive decision support system for regional energy management systems planning under uncertainty. Expert Syst. Appl. 2009, 36, 3470–3482. [Google Scholar] [CrossRef]
- Cai, Y.P.; Huang, G.H.; Tan, Q. Identification of optimal strategies for energy management systems planning under multiple uncertainties. Appl. Energy 2009, 86, 480–495. [Google Scholar] [CrossRef]
- Dorato, P.; Knudsen, H.K. Periodic optimization with applications to solar energy control. Automatica 1979, 15, 673–676. [Google Scholar] [CrossRef]
- Nkonoki, S.R.; Lushiku, E. Energy planning in Tanzania emerging trends in planning and research. Energy Policy 1988, 16, 280–291. [Google Scholar] [CrossRef]
- Kahane, A. New perspectives for energy efficiency and system optimization. Energy Policy 1991, 19, 199–201. [Google Scholar] [CrossRef]
- Kaya, A.; Keyes, M.A. Methods of energy efficient control and optimization for combined-cycle cogeneration. Energy Convers. Manag. 1992, 33, 225–233. [Google Scholar] [CrossRef]
- Liu, B.C.; Tzeng, G.H.; Hsieh, C.T. Energy planning and environmental quality management: A decision support system approach. Energy Econ. 1992, 14, 302–307. [Google Scholar] [CrossRef]
- Abagyan, R.A. Towards protein folding by global energy optimization. FEBS Lett. 1993, 325, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Schoenau, G.J.; Arinze, E.A.; Sokhansanj, S. Simulation and optimization of energy systems for in-bin drying of canola grain (rapeseed). Energy Convers. Manag. 1995, 36, 41–59. [Google Scholar] [CrossRef]
- Peippo, K.; Lund, P.D.; Vartiainen, E. Multivariate optimization of design trade-offs for solar low energy buildings. Energy Build. 1999, 29, 189–205. [Google Scholar] [CrossRef]
- Celik, A.N. Optimisation and techno-economic analysis of autonomous photovoltaic–wind hybrid energy systems in comparison to single photovoltaic and wind systems. Energy Convers. Manag. 2002, 43, 2453–2468. [Google Scholar] [CrossRef]
- Drozdz, M. An optimisation model of geothermal-energy conversion. Appl. Energy 2003, 74, 75–84. [Google Scholar] [CrossRef]
- Li, M.S.; Li, X.G. Investigation of wind characteristics and assessment of wind energy potential for Waterloo region, Canada. Energy Convers. Manag. 2005, 46, 3014–3033. [Google Scholar] [CrossRef]
- Chen, W.Y.; Wu, Z.X.; He, J.K.; Gao, P.F.; Xu, S.F. Carbon emission control strategies for China: A comparative study with partial and general equilibrium versions of the China MARKAL model. Energy 2007, 32, 59–72. [Google Scholar] [CrossRef]
- Chinese, D.; Meneghetti, A. Optimisation models for decision support in the development of biomass-based industrial district-heating networks in Italy. Appl. Energy 2005, 82, 228–254. [Google Scholar] [CrossRef]
- Djuric, N.; Novakovic, V.; Holst, J.; Mitrovic, Z. Optimization of energy consumption in buildings with hydronic heating systems considering thermal comfort by use of computer-based tools. Energy Build. 2007, 39, 471–477. [Google Scholar] [CrossRef]
- Dimopoulos, G.G.; Frangopoulos, C.A. Optimization of energy systems based on Evolutionary and Social metaphors. Energy 2008, 33, 171–179. [Google Scholar] [CrossRef]
- Xiao, D.; Pan, X.L.; Yuan, Y.; Mao, Z.Z.; Wang, F.L. Modeling and optimization for piercing energy consumption. Int. J. Iron Steel Res. 2009, 16, 40–44. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, X.; Zhang, Y.P. Analytical optimization of interior PCM for energy storage in a lightweight passive solar room. Appl. Energy 2009, 86, 2013–2018. [Google Scholar] [CrossRef]
- Sharma, A.; Chiu, H.H.; Ahrens, F.W.; Ahluwalia, R.K.; Ragsdell, K.M. Design of optimum compressed air energy-storage systems. Energy 1979, 4, 201–216. [Google Scholar] [CrossRef]
- Kavrakoğlu, I. Decision analysis in the energy sector. Appl. Math. Modell. 1980, 4, 456–462. [Google Scholar]
- Smith, B.R. Modelling New Zealand’s energy system. Eur. J. Oper. Res. 1980, 4, 173–184. [Google Scholar] [CrossRef]
- Riaz, T. Energy policy formulation for Pakistan An optimization approach. Energy Econ. 1981, 3, 191–197. [Google Scholar] [CrossRef]
- Schulz, V.; Stehfest, H. Regional energy supply optimization with multiple objectives. Eur. J. Oper. Res. 1984, 17, 302–312. [Google Scholar] [CrossRef]
- Samouilidis, J.E.; Psarras, J.; Papaconstantinou, D.V. Electricity planning vs. energy planning: A modelling approach. Omega 1984, 12, 341–346. [Google Scholar]
- Wene, C.O.; Rydėn, B. A comprehensive energy model in the municipal energy planning process. Eur. J. Oper. Res. 1988, 33, 212–222. [Google Scholar] [CrossRef]
- Groscurth, H.M.; Kümmel, R. The cost of energy optimization: A thermoeconomic analysis of national energy system. Energy 1989, 14, 685–696. [Google Scholar] [CrossRef]
- Tiris, M.; Atagunduz, G.; Dincer, I. Energy, economy and environment modelling: Applications for Turkey. Energy 1994, 19, 1005–1009. [Google Scholar]
- Arivalagan, A.; Raghavendra, B.G.; Rao, A.R.K. Integrated energy optimization model for a cogeneration based energy supply system in the process industry. Int. J. Electr. Power Energy Syst. 1995, 17, 227–233. [Google Scholar] [CrossRef]
- Lehtilä, A.; Pirilä, P. Reducing energy related emissions: Using an energy systems optimization model to support policy planning in Finland. Energy Policy 1996, 24, 805–819. [Google Scholar] [CrossRef]
- Bojić, M.; Stojanović, B. MILP optimization of a CHP energy system. Energy Convers. Manag. 1998, 39, 637–642. [Google Scholar] [CrossRef]
- Henning, D. MODEST-An energy-system optimization model applicable to local utilities and countries. Energy 1997, 22, 1135–1150. [Google Scholar] [CrossRef]
- Heyen, G.; Kalitventzeff, B. Methodology for optimization of operation to reduce site-scale energy use in production plants. Appl. Therm. Eng. 1997, 17, 100–1014. [Google Scholar] [CrossRef]
- Farag, A.S.; Mousa, A.E.; Cheng, T.C.; Beshir, M. Cost effective utilities energy plans optimization and management. Energy Convers. Manag. 1999, 40, 527–543. [Google Scholar] [CrossRef]
- El-Sayed, Y.M. Revealing the cost-efficiency trends of the design concepts of energy-intensive systems. Energy Convers. Manag. 1999, 40, 1599–1615. [Google Scholar] [CrossRef]
- Santos, A.; Dourado, A. Global optimization of energy and production in process industries: a genetic algorithm application. Control Eng. Pract. 1999, 7, 549–554. [Google Scholar] [CrossRef]
- Nagel, J. Determination of an economic energy supply structure based on biomass using a mixed-integer linear optimization model. Ecol. Eng. 2000, 16, 91–102. [Google Scholar] [CrossRef]
- Yokoyama, R.; Ito, K. Optimal design of energy supply systems based on relative robustness criterion. Energy Convers. Manag. 2002, 43, 499–514. [Google Scholar] [CrossRef]
- Koroneos, C.; Michailidis, M.; Moussiopoulos, N. Multi-objective optimization in energy systems: The case study of Lesvos Island, Greece. Renew. Sustain. Energy Rev. 2004, 8, 91–100. [Google Scholar] [CrossRef]
- Ostadi, B.; Moazzami, D.; Rezaie, K. A non-linear programming model for optimization of the electrical energy consumption in typical factory. Appl. Math. Comput. 2007, 187, 944–950. [Google Scholar] [CrossRef]
- Beck, J.; Kempener, R.; Cohen, B.; Petrie, J. A complex systems approach to planning, optimization and decision making for energy networks. Energy Policy 2008, 36, 2795–2805. [Google Scholar] [CrossRef]
- Bujak, J. Optimal control of energy losses in multi-boiler steam systems. Energy 2009, 34, 1260–1270. [Google Scholar] [CrossRef]
- Wene, C.O. Energy-economy analysis: Linking the macroeconomic and system engineering approaches. Energy 1996, 21, 809–824. [Google Scholar] [CrossRef]
- Chen, S.H.; Wu, J. Interval optimization of dynamic response for structure with interval parameters. Comput. Struct. 2004, 82, 1–11. [Google Scholar] [CrossRef]
- Cormio, C.; Dicorato, M.; Minoia, A.; Trovato, M. A regional energy planning methodology including renewable energy sources and environmental constraints. Renew. Sustain. Energy Rev. 2003, 7, 99–130. [Google Scholar] [CrossRef]
- Tessmer, R.G.; Hoffman, K.C.; Marcuse, W.; Behling, D.J. Coupled energy system-economic models and strategic planning. Comput. Oper. Res. 1975, 2, 213–224. [Google Scholar] [CrossRef]
- Kram, T.; Hill, D. A multinational model for CO2 reduction: Defining boundaries of future CO2 emissions in nine countries. Energy Policy 1996, 24, 39–51. [Google Scholar] [CrossRef]
- Howells, M.I.; Alfstad, T.; Victor, D.G.; Goldstein, G.; Remme, U. A model of household energy services in a low-income rural African village. Energy Policy 2005, 33, 1833–1851. [Google Scholar] [CrossRef]
- Yang, X.H.; Yang, Z.F.; Shen, Z.Y. GHHAGA for environmental systems optimization. J. Environ. Inf. 2005, 5, 36–41. [Google Scholar] [CrossRef]
- Fishbone, L.G.; Abilock, H.M. MARKAL, a linear programming model for energy systems analysis: Technical description of the BNL version. Int. J. Energy Res. 1981, 5, 353–375. [Google Scholar] [CrossRef]
- Unger, T.; Ekvall, T. Benefits from increased cooperation and energy trade under CO2 commitments—The Nordic case. Clim. Policy 2003, 3, 279–294. [Google Scholar] [CrossRef]
- Henning, D.; Amiri, S.; Holmgren, K. Modelling and optimisation of electricity, steam and district heating production for a local Swedish utility. Eur. J. Oper. Res. 2006, 175, 1224–1247. [Google Scholar] [CrossRef]
- Kannan, R. Uncertainties in key low carbon power generation technologies—Implication for UK decarbonisation targets. Appl. Energy 2009, 86, 1873–1886. [Google Scholar] [CrossRef]
- Watcharejyothin, M.; Shrestha, R.M. Effects of cross-border power trade between Laos and Thailand: Energy security and environmental implications. Energy Policy 2009, 37, 1782–1792. [Google Scholar] [CrossRef]
- Kannan, R.; Strachan, N. Modelling the UK residential energy sector under long-term decarbonisation scenarios: Comparison between energy systems and sectoral modelling approaches. Appl. Energy 2009, 86, 416–428. [Google Scholar] [CrossRef]
- van den Broek, M.; Brederode, E.; Ramírez, A.; Kramers, L.; van der Kuip, M.; Wildenborg, T.; Faaij, A.; Turkenburg, W. An integrated GIS-MARKAL toolbox for designing a CO2 infrastructure network in the Netherlands. Energy Procedia 2009, 1, 4071–4078. [Google Scholar] [CrossRef]
- Stock, K.J.; Musgrove, A.R. MENSA: A Regionalized Version of MARKAL; Lucas Heights Research Labs: Sutherland, Australia, 1984. [Google Scholar]
- Messner, S.; Strubegger, M. User’s Guide for MESSAGE III. WP-95-69; International Institute for Applied Systems Analysis: Laxenburg, Austria, 1995. [Google Scholar]
- Messner, S.; Strubegger, M. Part A: User’s Guide to CO2DB: The IIASA CO2 Technology Data Bank—Version 1.0; Working Paper. WP-91-31; International Institute for Applied Systems Analysis: Laxenburg, Austria, 1995. [Google Scholar]
- Finon, D. Un Modele Energetique pour la France; Centre Nationale de la Recherche Scienti-fique: Paris, France, 1976; p. 39. [Google Scholar]
- van der Voort, E. The EFOM 12C energy supply model within the EC modelling system. Omega 1982, 10, 507–523. [Google Scholar] [CrossRef]
- Yeung, D.; Hartwick, J.M. Interest rate and output price uncertainty and industry equilibrium for non-renewable resource extracting firms. Resour. Energy 1988, 10, 1–14. [Google Scholar] [CrossRef]
- Tan, Q.; Huang, G.H.; Cai, Y.P. Identification of optimal plans for waste management in an environment of fuzziness and two-layer randomness. Stoch. Environ. Res. Risk Assess. 2010, 24, 147–164. [Google Scholar] [CrossRef]
- Khella, A.F.A. Egypt: Energy planning policies with environmental considerations. Energy Policy 1997, 25, 105–115. [Google Scholar] [CrossRef]
- Grohnheit, P.E.; Mortensen, B.O.G. Competition in the market for space heating: District heating as the infrastructure for competition among fuels and technologies. Energy Policy 2003, 31, 817–826. [Google Scholar] [CrossRef]
- Vaillancourt, K.; Labriet, M.; Loulou, R.; Waaub, J.P. The role of nuclear energy in long-term climate scenarios: An analysis with the World-TIMES model. Energy Policy 2008, 36, 2296–2307. [Google Scholar] [CrossRef]
- Sadeghi, M.; Hosseini, H.M. Energy supply planning in Iran by using fuzzy linear programming approach (regarding uncertainties of investment costs). Energy Policy 2006, 34, 993–1003. [Google Scholar] [CrossRef]
- Backus, G.; Amlin, J.; Kleeman, S. Introduction to Energy 2020; Systematic Solutions, Inc.: Fairborn, OH, USA, 1993. [Google Scholar]
- Luhanga, M.L.; Mwandosya, M.J.; Luteganya, P.R. Optimization in computerized energy modelling for Tanzania. Energy 1993, 18, 1171–1179. [Google Scholar] [CrossRef]
- Stockholm Environment Institute (SEI). LEAP, Long Range Energy Alternatives Planning System, User Guide; SEI, Tellus Institute: Boston, MA, USA, 1995. [Google Scholar]
- Energy Information Agency (EIA). The National Energy Modeling System: An Overview; DOE/EIA-0581(96); EIA: Washington, DC, USA, 1996. [Google Scholar]
- Islam, S.M.N. Sustainable economic developments in the Australian energy sector: Findings of the Australian energy planning system optimization model (AEPSOM). Renew. Sustain. Energy Rev. 1997, 1, 229–236. [Google Scholar] [CrossRef]
- Fujii, Y.; Yamaji, K. Assessment of technological options in the global energy system for limiting the atmospheric CO2 concentration. Environ. Econ. Policy Stud. 1998, 1, 113–139. [Google Scholar] [CrossRef]
- Huang, X.X. Chance-constrained programming models for capital budgeting with NPV as fuzzy parameters. J. Comput. Appl. Math. 2007, 198, 149–159. [Google Scholar] [CrossRef]
- Kadian, R.; Dahiya, R.P.; Garg, H.P. Energy-related emissions and mitigation opportunities from the household sector in Delhi. Energy Policy 2007, 35, 6195–6211. [Google Scholar] [CrossRef]
- Papagiannis, G.; Dagoumas, A.; Lettas, N.; Dokopoulos, P. Economic and environmental impacts from the implementation of an intelligent demand side management system at the European level. Energy Policy 2008, 36, 163–180. [Google Scholar] [CrossRef]
- Jiang, B.B.; Chen, W.Y.; Yu, Y.F.; Zeng, L.M.; Victor, D. The future of natural gas consumption in Beijing, Guangdong and Shanghai: An assessment utilizing MARKAL. Energy Policy 2008, 36, 3286–3299. [Google Scholar] [CrossRef]
- Nguyen, K.Q. Wind energy in Vietnam: Resource assessment, development status and future implications. Energy Policy 2007, 35, 1405–1413. [Google Scholar] [CrossRef]
- Nguyen, K.Q. Internalizing externalities into capacity expansion planning: The case of electricity in Vietnam. Energy 2008, 33, 740–746. [Google Scholar] [CrossRef]
- Schulz, T.F.; Barreto, L.; Kypreos, S.; Stucki, S. Assessing wood-based synthetic natural gas technologies using the SWISS-MARKAL model. Energy 2007, 32, 1948–1959. [Google Scholar] [CrossRef]
- Endo, E. Market penetration analysis of fuel cell vehicles in Japan by using the energy system model MARKAL. Int. J. Hydrog. Energy 2007, 32, 1347–1354. [Google Scholar] [CrossRef]
- Berger, C.; Fuller, D.; Haurie, A.; Loulou, R.; Luthra, D.; Waaub, J.P. Modelling energy use in the mineral processing industries of Ontario with MARKAL-Ontario. Energy 1990, 15, 741–758. [Google Scholar] [CrossRef]
- Rydén, B.; Johnsson, J.; Wene, C.O. CHP production in integrated energy systems examples from five Swedish communities. Energy Policy 1993, 21, 176–190. [Google Scholar] [CrossRef]
- Macchiato, M.F.; Cosmi, C.; Ragosta, M.; Tosato, G. Atmospheric emission reduction and abatement costs in regional environmental planning. J. Environ. Manag. 1994, 41, 141–156. [Google Scholar] [CrossRef]
- Gielen, D.; Chen, C.H. The CO2 emission reduction benefits of Chinese energy policies and environmental policies: A case study for Shanghai, period 1995–2020. Ecol. Econ. 2001, 39, 257–270. [Google Scholar] [CrossRef]
- Büeler, B. Solving an equilibrium model for trade of CO2 emission permits. Eur. J. Oper. Res. 1997, 102, 393–403. [Google Scholar] [CrossRef]
- Kanudia, A.; Loulou, R. Robust responses to climate change via stochastic MARKAL: The case of Québec. Eur. J. Oper. Res. 1998, 106, 15–30. [Google Scholar] [CrossRef]
- Kanudia, A.; Shukla, P.R. Modelling of Uncertainties and price elastic demands in energy-environment planning for India. Omega 1998, 26, 409–423. [Google Scholar] [CrossRef]
- Larsson, T.; Grohnheit, P.E.; Unander, F. Common action and electricity trade in Northern Europe. Int. Trans. Oper. Res. 1998, 5, 3–11. [Google Scholar] [CrossRef]
- Sato, O.; Shimoda, M.; Tatematsu, K.; Tadokoro, Y. Roles of nuclear energy in Japan’s future energy systems. Progress Nucl. Energy 2000, 37, 95–100. [Google Scholar] [CrossRef]
- Dolf, G.; Chen, C.H. The CO2 emission reduction benefits of Chinese energy policies and environmental policies: A case study for Shanghai, period 1995–2020. Ecol. Econ. 2001, 39, 257–270. [Google Scholar] [CrossRef]
- Wu, Z.X.; de Laquil, P.; Larson, E.D.; Chen, W.Y.; Gao, P.F. Future implications of China’s energy-technology choices: summary of a report to the Working Group on Energy Strategies and Technologies. Energy Sustain. Dev. 2001, 5, 19–31. [Google Scholar] [CrossRef]
- Salvia, M.; Cosmi, C.; Macchiato, M.; Mangiamele, L. Waste management system optimisation for Southern Italy with MARKAL model. Resour. Conserv. Recycl. 2002, 34, 91–106. [Google Scholar] [CrossRef]
- Cosmi, C.; Macchiato, M.; Mangiamele, L.; Marmo, G.; Pietrapertosa, F.; Salvia, M. Environmental and economic effects of renewable energy sources use on a local case study. Energy Policy 2003, 31, 443–457. [Google Scholar] [CrossRef]
- de Laquil, P.; Chen, W.Y.; Larson, E.D. Modeling China’s energy future. Energy Sustain. Dev. 2003, 7, 40–56. [Google Scholar] [CrossRef]
- Jaccard, M.; Loulou, R.; Kanudia, A.; Nyboer, J.; Bailie, A.; Labriet, M. Methodological contrasts in costing greenhouse gas abatement policies: Optimization and simulation modeling of micro-economic effects in Canada. Eur. J. Oper. Res. 2003, 145, 148–164. [Google Scholar] [CrossRef]
- Mathur, J.; Bansal, N.K.; Wagner, H.J. Investigation of greenhouse gas reduction potential and change in technological selection in Indian power sector. Energy Policy 2003, 31, 1235–1244. [Google Scholar]
- Pietrapertosa, F.; Cosmi, C.; Macchiato, M.; Marmo, G.; Salvia, M. Comprehensive modelling for approaching the Kyoto targets on a local scale. Renew. Sustain. Energy Rev. 2003, 7, 249–270. [Google Scholar] [CrossRef]
- Carlson, D.A.; Haurie, A.; Vial, J.P.; Zachary, D.S. Large-scale convex optimization methods for air quality policy assessment. Automatica 2004, 40, 385–395. [Google Scholar] [CrossRef]
- Koen, E.L.; Morales, S.R. Response from a MARKAL technology model to the EMF scenario assumptions. Energy Econ. 2004, 26, 655–674. [Google Scholar] [CrossRef]
- Salvia, M.; Pietrapertosa, F.; Cosmi, C.; Cuomo, V.; Macchiato, M. Approaching the Kyoto targets: a case study for Basilicata region (Italy). Renew. Sustain. Energy Rev. 2004, 8, 73–90. [Google Scholar]
- Endo, E.; Ichinohe, M. Cost-effectivess of subsidization to photovoltaics in Japan from the viewpoint of carbon dioxide emission reduction. Greenh. Gas Control Technol. 2005, 7, 841–849. [Google Scholar]
- Unger, T.; Ahlgren, E.O. Impacts of a common green certificate market on electricity and CO2-emission markets in the Nordic countries. Energy Policy 2005, 33, 2152–2163. [Google Scholar] [CrossRef]
- Chen, C.H.; Wang, B.Y.; Fu, Q.Y.; Green, C.; Streets, D.G. Reductions in emissions of local air pollutants and co-benefits of Chinese energy policy: A Shanghai case study. Energy Policy 2006, 34, 754–762. [Google Scholar] [CrossRef]
- Endo, E.; Ichinohe, M. Analysis on market deployment of photovoltaics in Japan by using energy system model MARKAL. Sol. Energy Mater. Solar Cells 2006, 90, 3061–3067. [Google Scholar] [CrossRef]
- Ichinohe, M.; Endo, E. Analysis of the vehicle mix in the passenger-car sector in Japan for CO2 emissions reduction by a MARKAL model. Appl. Energy 2006, 83, 1047–1061. [Google Scholar] [CrossRef]
- Schäfer, A.; Jacoby, H.D. Vehicle technology under CO2 constraint: A general equilibrium analysis. Energy Policy 2006, 34, 975–985. [Google Scholar] [CrossRef]
- Contaldi, M.; Gracceva, F.; Tosato, G. Evaluation of green-certificates policies using the MARKAL-MACRO-Italy model. Energy Policy 2007, 35, 797–808. [Google Scholar] [CrossRef]
- Rafaj, P.; Kypreos, S. Internalisation of external cost in the power generation sector: Analysis with Global Multi-regional MARKAL model. Energy Policy 2007, 35, 828–843. [Google Scholar] [CrossRef]
- Winkler, H. Energy policies for sustainable development in South Africa. Energy Sustain. Dev. 2007, 11, 26–34. [Google Scholar] [CrossRef]
- Silversides, C.R. Energy from forest biomass—Its effect on forest management practices in Canada. Biomass 1982, 2, 29–41. [Google Scholar] [CrossRef]
- Huang, L.M.; Haque, E.; Barg, S. Public policy discourse, planning and measures toward sustainable energy strategies in Canada. Renew. Sustain. Energy Rev. 2008, 12, 91–115. [Google Scholar] [CrossRef]
- Cicek, N.; Lambert, S.; Venema, H.D.; Snelgrove, K.R.; Bibeau, E.L.; Grosshans, R. Nutrient removal and bio-energy production from Netley-Libau Marsh at Lake Winnipeg through annual biomass harvesting. Biomass Bioenergy 2006, 30, 529–536. [Google Scholar] [CrossRef]
- Liebig, M.A.; Morgan, J.A.; Reeder, J.D.; Ellert, B.H.; Gollany, H.T.; Schuman, G.E. Greenhouse gas contributions and mitigation potential of agricultural practices in northwestern USA and western Canada. Soil Tillage Res. 2006, 83, 25–52. [Google Scholar] [CrossRef]
- Khakbazan, M.; Mohr, R.M.; Derksen, D.A.; Monreal, M.A.; Grant, C.A.; Zentner, R.P.; Moulin, A.P.; McLaren, D.L.; Irvine, R.B.; Nagy, C.N. Effects of alternative management practices on the economics, energy and GHG emissions of a wheat–pea cropping system in the Canadian prairies. Soil Tillage Res. 2009, 104, 30–38. [Google Scholar] [CrossRef]
- Islam, S.M.N. The role of renewable energy in the energy system: An issue in the philosophy of renewal of natural resources. Energy Econ. 1995, 17, 117–124. [Google Scholar] [CrossRef]
- Hernández, F. Economic-environmental criteria for sanctioning the substitution of fossil fuel-fed energy systems by renewable energy systems. Energy Conver. Manag. 1997, 38, 1509–1513. [Google Scholar] [CrossRef]
- Meurer, C.; Barthels, H.; Brocke, W.A.; Emonts, B.; Groehn, H.G. PHOEBUS—an autonomous supply system with renewable energy: six years of operational experience and advanced concepts. Sol. Energy 1999, 67, 131–138. [Google Scholar] [CrossRef]
- Alves, L.M.M.; Costa, A.L.; Carvalho, M.G. Analysis of potential for market penetration of renewable energy technologies in peripheral islands. Renew. Energy 2000, 19, 311–317. [Google Scholar] [CrossRef]
- Iniyan, S.; Suganthi, L.; Jagadeesan, T.R.; Samuel, A.A. Reliability based socio economic optimal renewable energy model for India. Renew. Energy 2000, 19, 291–297. [Google Scholar] [CrossRef]
- Bassam, N.E. Renewable energy for rural communities. Renew. Energy 2001, 24, 401–408. [Google Scholar] [CrossRef]
- Duić, N.; Carvalho, M.G. Increasing renewable energy sources in island energy supply: case study Porto Santo. Renew. Sustain. Energy Rev. 2004, 8, 383–399. [Google Scholar] [CrossRef]
- Pestana, I.N.; Latorre, F.J.G.; Espinoza, C.A.; Gotor, A.G. Optimization of RO desalination systems powered by renewable energies. Part I: Wind energy. Desalination 2004, 160, 293–299. [Google Scholar]
- Mitchell, K.; Nagrial, M.; Rizk, J. Simulation and optimisation of renewable energy systems. Int. J. Electr. Power Energy Syst. 2005, 27, 177–188. [Google Scholar] [CrossRef]
- Akella, A.K.; Sharma, M.P.; Saini, R.P. Optimum utilization of renewable energy sources in a remote area. Renew. Sustain. Energy Rev. 2007, 11, 894–908. [Google Scholar] [CrossRef]
- Deshmukh, M.K.; Deshmukh, S.S. Modeling of hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2008, 12, 235–249. [Google Scholar] [CrossRef]
- Karlsson, K.; Meibom, P. Optimal investment paths for future renewable based energy systems—Using the optimisation model Balmorel. Int. J. Hydrog. Energy 2008, 33, 1777–1787. [Google Scholar] [CrossRef]
- Bernal-Agustín, J.L.; Dufo-López, R. Simulation and optimization of stand-alone hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2009, 13, 2111–2118. [Google Scholar] [CrossRef]
- Cai, Y.P.; Huang, G.H.; Lu, H.W.; Yang, Z.F.; Tan, Q. I-VFRP: An interval-valued fuzzy robust programming approach for municipal waste management planning under uncertainty. Eng. Optim. 2009, 41, 399–418. [Google Scholar] [CrossRef]
- Cai, Y.P.; Huang, G.H.; Tan, Q. An inexact optimization model for regional energy systems planning in the mixed stochastic and fuzzy environment. Int. J. Energy Res. 2009, 33, 443–468. [Google Scholar] [CrossRef]
- Cai, Y.P.; Huang, G.H.; Tan, Q.; Yang, Z.F. Planning of community-scale renewable energy management systems in mixed stochastic and fuzzy environment. Renew. Energy 2009, 34, 1833–1847. [Google Scholar] [CrossRef]
- Hiremath, R.B.; Kumar, B.; Balachandra, P.; Ravindranath, N.H.; Raghunandan, B.N. Decentralised renewable energy: Scope, relevance and applications in the Indian context. Energy Sustain. Dev. 2009, 13, 4–10. [Google Scholar] [CrossRef]
- Niknam, T.; Firouzi, B.B. A practical algorithm for distribution state estimation including renewable energy sources. Renew. Energy 2009, 34, 2309–2316. [Google Scholar] [CrossRef]
- Østergaard, P.A. Reviewing optimisation criteria for energy systems analyses of renewable energy integration. Energy 2009, 34, 1236–1245. [Google Scholar] [CrossRef]
- Duff, W.S. A methodology for selecting optimal components for solar thermal energy systems: Application to power generation. Sol. Energy 1975, 17, 245–254. [Google Scholar] [CrossRef]
- Leledakis, K.; Goumas, T.; Samouilidis, J.E. Soft energy sources in regional energy systems: The case of the Cyclades. Energy 1987, 12, 1329–1332. [Google Scholar] [CrossRef]
- Alidi, A.S. An optimization model for the utilization of wood residues as an energy source. Resour. Energy 1988, 10, 79–94. [Google Scholar] [CrossRef]
- Bose, R.K.; Anandalingam, G. Sustainable urban energy-environment management with multiple objectives. Energy 1996, 21, 305–318. [Google Scholar] [CrossRef]
- Martins, A.G.; Coelho, D.; Antunes, C.H.; Clímaco, J. A multiple objective linear programming approach to power generation planning with demand-side management (DSM). Int. Trans. Oper. Res. 1996, 3, 305–317. [Google Scholar] [CrossRef]
- Watson, S.J.; Ter-Gazarian, A.G. The optimisation of renewable energy sources in an electrical power system by use of simulation and deterministic planning models. Int. Trans. Oper. Res. 1996, 3, 255–269. [Google Scholar] [CrossRef]
- Badin, J.S.; Tagore, S. Energy pathway analysis—a hydrogen fuel cycle framework for system studies. Int. J. Hydrog. Energy 1997, 22, 389–395. [Google Scholar] [CrossRef]
- Özelkan, E.C.; Galambosi, A.; Gaucherand, E.F.; Duckstein, L. Linear quadratic dynamic programming for water reservoir management. Appl. Math. Modell. 1997, 21, 591–598. [Google Scholar] [CrossRef]
- Gopalakrishnan, N.K.; Thyagarajan, K.; Geetha, K.B. Optimization studies on integrated wind energy systems. Renew. Energy 1999, 16, 940–943. [Google Scholar] [CrossRef]
- Vosen, S.R.; Keller, J.O. Hybrid energy storage systems for stand-alone electric power systems: optimization of system performance and cost through control strategies. Int. J. Hydrog. Energy 1999, 24, 1139–1156. [Google Scholar] [CrossRef]
- Bojić, M. Optimization of heating and cooling of a building by employing refuse and renewable energy. Renew. Energy 2000, 20, 453–465. [Google Scholar] [CrossRef]
- Suganthi, L.; Williams, A. Renewable energy in India-a modelling study for 2020–2021. Energy Policy 2000, 28, 1095–1109. [Google Scholar] [CrossRef]
- Iniyan, S.; Sumathy, K. The application of a Delphi technique in the linear programming optimization of future renewable energy options for India. Biomass Bioenergy 2003, 24, 39–50. [Google Scholar] [CrossRef]
- Kong, X.Q.; Wang, R.Z.; Huang, X.H. Energy optimization model for a CCHP system with available gas turbines. Appl. Therm. Eng. 2005, 25, 377–391. [Google Scholar] [CrossRef]
- Kélouwani, S.; Agbossou, K.; Chahine, R. Model for energy conversion in renewable energy system with hydrogen storage. J. Power Sour. 2005, 140, 392–399. [Google Scholar] [CrossRef]
- Nakata, T.; Kubo, K.; Lamont, A. Design for renewable energy systems with application to rural areas in Japan. Energy Policy 2005, 33, 209–219. [Google Scholar] [CrossRef]
- Dudhani, S.; Sinha, A.K.; Inamdar, S.S. Renewable energy sources for peak load demand management in India. Int. J. Electr. Power Energy Syst. 2006, 28, 396–400. [Google Scholar] [CrossRef]
- Dufo-López, R.; Bernal-Agustín, J.L.; Contreras, J. Optimization of control strategies for stand-alone renewable energy systems with hydrogen storage. Renew. Energy 2007, 32, 1102–1126. [Google Scholar] [CrossRef]
- Zoulias, E.I.; Lymberopoulas, N. Techno-economic analysis of the integration of hydrogen energy technologies in renewable energy-based stand-along power system. Renew. Energy 2007, 32, 680–696. [Google Scholar] [CrossRef]
- Mařík, K.; Schindler, Z.; Stluka, P. Decision support tools for advanced energy management. Energy 2008, 33, 858–873. [Google Scholar] [CrossRef]
- Dalton, G.J.; Lockington, D.A.; Baldock, T.E. Feasibility analysis of stand-alone renewable energy supply options for a large hotel. Renew. Energy 2008, 33, 1475–1490. [Google Scholar] [CrossRef]
- Dalton, G.J.; Lockington, D.A.; Baldock, T.E. Case study feasibility analysis of renewable energy supply options for small to medium-sized tourist accommodations. Renew. Energy 2009, 34, 1134–1144. [Google Scholar] [CrossRef]
- Dalton, G.J.; Lockington, D.A.; Baldock, T.E. Feasibility analysis of renewable energy supply options for a grid-connected large hotel. Renew. Energy 2009, 34, 955–964. [Google Scholar] [CrossRef]
- Babu, C.A.; Ashok, S. Optimal utilization of renewable energy-based IPPs for industrial load management. Renew. Energy 2009, 34, 2455–2460. [Google Scholar] [CrossRef]
- Kamarudin, S.K.; Daud, W.R.W.; Yaakub, Z.; Misron, Z.; Anuar, W.; Yusuf, N.N.A.N. Synthesis and optimization of future hydrogen energy infrastructure planning in Peninsular Malaysia. Int. J. Hydrog. Energy 2009, 34, 2077–2088. [Google Scholar] [CrossRef]
- Fong, K.F.; Hanby, V.I.; Chow, T.T. System optimization for HVAC energy management using the robust evolutionary algorithm. Appl. Therm. Eng. 2009, 29, 2327–2334. [Google Scholar] [CrossRef]
- Zhao, H.B.; Burke, A.F. Optimization of fuel cell system operating conditions for fuel cell vehicles. J. Power Sour. 2009, 186, 408–416. [Google Scholar] [CrossRef]
- Jewett, G.; Faghri, A.; Xiao, B. Optimization of water and air management systems for a passive direct methanol fuel cell. Int. J. Heat Mass Transf. 2009, 52, 3564–3575. [Google Scholar] [CrossRef]
- Lagorse, J.; Paire, D.; Miraoui, A. A multi-agent system for energy management of distributed power sources. Renew. Energy 2009, 35, 174–182. [Google Scholar] [CrossRef]
- Andreassi, L.; Ciminelli, M.V.; Feola, M.; Ubertini, S. Innovative method for energy management: Modelling and optimal operation of energy systems. Energy Build. 2009, 41, 436–444. [Google Scholar] [CrossRef]
- Frombo, F.; Minciardi, R.; Robba, M.; Rosso, F.; Sacile, R. Planning woody biomass logistics for energy production: A strategic decision model. Biomass Bioenergy 2009, 33, 372–383. [Google Scholar] [CrossRef]
- Chicco, G.; Mancarella, P. Matrix modelling of small-scale trigeneration systems and application to operational optimization. Energy 2009, 34, 261–273. [Google Scholar] [CrossRef]
- Chaturvedi, K.T.; Pandit, M.; Srivastava, L. Particle swarm optimization with time varying acceleration coefficients for non-convex economic power dispatch. Int. J. Electr. Power Energy Syst. 2009, 31, 249–257. [Google Scholar] [CrossRef]
- Ehsani, A.; Ranjbar, A.M.; Fotuhi-Firuzabad, M. A proposed model for co-optimization of energy and reserve in competitive electricity markets. Appl. Math. Modell. 2009, 33, 92–109. [Google Scholar] [CrossRef]
- Morais, H.; Kádár, P.; Faria, P.; Vale, Z.A.; Khodr, H.M. Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming. Renew. Energy 2010, 35, 151–156. [Google Scholar] [CrossRef]
- Andricevic, R.; Jacobson, R.L.; Daniels, J.I. Accounting for predictive uncertainty in a risk analysis focusing on radiological contamination of groundwater. In Groundwater Quality Mangement, GQM 93, Proceedings of an International Conference Held at Tallinn, Estonia, 6–9 September 1993; Kovar, K., Soveri, J., Eds.; International Association of Hydrological Sciences (IAHS) Press: Wallingford, UK, 1994; pp. 215–224. [Google Scholar]
- Burr, D.T.; Sudicky, E.A.; Naff, R.L. Nonreactive and reactive solute transport in three-dimensional heterogeneous porous media: mean displacement, plume spreading, and uncertainty. Water Resour. Res. 1994, 30, 791–815. [Google Scholar] [CrossRef]
- Cushman, J.H.; Hu, B.X.; Deng, F.W. Nonlocal reactive transport with physical and chemical heterogeneity: localization errors. Water Resour. Res. 1995, 31, 2219–2237. [Google Scholar] [CrossRef]
- Weber, W.J., Jr.; Huang, W.; Yu, H. Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments, effects of soil organic matter heterogeneity. J. Contam. Hydrol. 1998, 31, 149–165. [Google Scholar] [CrossRef]
- Chen, M.J.; Huang, G.H. A derivative algorithm for inexact quadratic program—application to environmental decision-making under uncertainty. Eur. J. Oper. Res. 2001, 128, 570–586. [Google Scholar] [CrossRef]
- Gelhar, L.W. Stochastic Subsurface Hydrology; Prentice Hall: Englewood Cliffs, NJ, USA, 1993. [Google Scholar]
- Bardossy, A.; Duckstein, L. Fuzzy Rule-Based Modeling with Applications to Geophysical, Biological and Engineering Systems; CRC Press Inc.: New York, NY, USA, 1995. [Google Scholar]
- Hoogeweg, C.G. Impact of Uncertainty in Model Input Data on Predicted Pesticide Leaching. Ph.D. Thesis, University of Florida, NGainesville, FL, USA, 1999. [Google Scholar]
- Blair, A.N.; Ayyub, B.M.; Bender, W.J. Fuzzy stochastic risk-based decision analysis with the mobile offshore base as a case study. Mar. Struct. 2001, 14, 69–88. [Google Scholar] [CrossRef]
- Huang, G.H. Grey Mathematical Programming and Its Application to Municipal Solid Waste Management Planning. Ph.D. Thesis, Department of Civil Engineering, McMaster University, Hamilton, Canada, 1994. [Google Scholar]
- Li, Y.P. Development of Inexact Multi-Stage Stochastic Programming Methods for Environmental Management under Uncertainty. Ph.D. Thesis, University of Regina, Regina, Saskatchewan, Canada, 2007; p. 46. [Google Scholar]
- Inuiguchi, M.; Ichihashi, H.; Tanaka, H. Fuzzy Programming: A Survey of Recent Developments. In Stochastic versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty; Slowinski, R., Teghem, J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990; pp. 45–70. [Google Scholar]
- Tanaka, H.; Okuda, T.; Asai, K. On fuzzy mathematical programming. J. Cybern. 1974, 3, 37–46. [Google Scholar] [CrossRef]
- Zimmermann, H.J. Applications of fuzzy sets theory to mathematical programming. Inf. Sci. 1985, 36, 29–58. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variables and its application to approximate reasoning-1. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Bellman, R.E.; Zadeh, L.A. Decision making in a fuzzy environment. Manag. Sci. 1970, 17, 141–164. [Google Scholar] [CrossRef]
- Negoita, C.V.; Minoiu, S.; Stan, E. On considering imprecision in dynamic linear programming. Econ. Comput. Econ. Cybern. Stud. Res. 1976, 3, 83–96. [Google Scholar]
- Dubois, D.; Prade, H. Systems of linear fuzzy constraints. Fuzzy Sets Syst. 1980, 3, 37–48. [Google Scholar] [CrossRef]
- Inuiguchi, M.; Sakawa, M.; Kume, Y. The usefulness of possibilistic programming in production planning problems. Int. J. Prod. Econ. 1994, 33, 45–52. [Google Scholar] [CrossRef]
- Mitali, D.; Keith, W.H. Fuzzy multicriteria model for comparing energy projects. Energy 1987, 12, 599–613. [Google Scholar] [CrossRef]
- Sanders, I.; Batty, W.J.; Probert, S.D.; Hagino, K.; Aida, S. Supply of, and demand for, a resource: Fuzzy logistical optimisation technique. Appl. Energy 1993, 46, 285–302. [Google Scholar] [CrossRef]
- Kralj, B.; Rajaković, N. Multiobjective programming in power system optimization: New approach to generator maintenance scheduling. Int. J. Electr. Power Energy Syst. 1994, 16, 211–220. [Google Scholar] [CrossRef]
- Matos, M.A.; de Leão, P.M.T. Electric distribution systems planning with fuzzy loads. Int. Trans. Oper. Res. 1995, 2, 287–296. [Google Scholar] [CrossRef]
- Mamlook, R.; Akash, B.A.; Nijmeh, S. Fuzzy sets programming to perform evaluation of solar systems in Jordan. Energy Convers. Manag. 2001, 42, 1717–1726. [Google Scholar] [CrossRef]
- Borges, A.R.; Antunes, C.H. A fuzzy multiple objective decision support model for energy-economy planning. Eur. J. Oper. Res. 2003, 145, 304–316. [Google Scholar] [CrossRef]
- Mavrotas, G.; Demertzis, H.; Meintani, A.; Diakoulaki, D. Energy planning in buildings under uncertainty in fuel costs: The case of a hotel unit in Greece. Energy Convers. Manag. 2003, 44, 1303–1321. [Google Scholar] [CrossRef]
- Jana, C.; Chattopadhyay, R.N. Direct energy optimization for sustainable agricultural operation—a fuzzy linear programming approach. Energy Sustain. Dev. 2005, 9, 5–12. [Google Scholar] [CrossRef]
- Mavrotas, G.; Diakoulaki, D.; Florios, K.; Georgiou, P. A mathematical programming framework for energy planning in services’ sector buildings under uncertainty in load demand: The case of a hospital in Athens. Energy Policy 2008, 36, 2415–2429. [Google Scholar] [CrossRef]
- Chen, A.S.; Sheen, J.N. Applying fuzzy mathematics to the evaluation of avoided cost for a load management program. Electr. Power Syst. Res. 1993, 26, 117–125. [Google Scholar] [CrossRef]
- Kagan, N.; Adams, R.N. Electrical power distribution systems planning using fuzzy mathematical programming. Int. J. Electr. Power Energy Syst. 1994, 16, 191–196. [Google Scholar] [CrossRef]
- Groscurth, H.M.; Kress, K.P. Fuzzy data compression for energy optimization models. Energy 1998, 23, 1–9. [Google Scholar] [CrossRef]
- Mavrotas, G.; Florios, K.; Georgiou, P. Energy planning in buildings under uncertainty in fuel costs: The case of a hospital in Greece. Comput. Aided Chem. Eng. 2006, 21, 1735–1740. [Google Scholar]
- Mazur, V. Fuzzy thermoeconomic optimization of energy-transforming systems. Appl. Energy 2007, 84, 749–762. [Google Scholar] [CrossRef]
- Nguene, G.; Finger, M. A fuzzy-based approach for strategic choices in electric energy supply. The case of a Swiss power provider on the eve of electricity market opening. Eng. Appl. Artif. Intell. 2007, 20, 37–48. [Google Scholar]
- Martinsen, D.; Krey, V. Compromises in energy policy—Using fuzzy optimization in an energy systems model. Energy Policy 2008, 36, 2983–2994. [Google Scholar] [CrossRef]
- Bitar, S.D.B.; Junior, C.T.C.; Barreiros, J.A.L.; Neto, J.C.L. Expansion of isolated electrical systems in the Amazon: An approach using fuzzy multi-objective mathematical programming. Energy Policy 2009, 37, 3899–3905. [Google Scholar] [CrossRef]
- Beale, E. On minimizing a convex function subject to linear inequalities. J. R. Stat. Soc. B 1955, 17, 173–184. [Google Scholar]
- Huang, G.H.; Baetz, B.W.; Patry, G.G. Grey dynamic programming for waste-management planning under uncertainty. J. Urban Plann. Dev. 1994, 120, 132–156. [Google Scholar] [CrossRef]
- Huang, G.H.; Anderson, W.P.; Baetz, B.W. Environmental input-output analysis and its application to regional solid-waste management planning. J. Environ. Manag. 1994, 42, 63–79. [Google Scholar] [CrossRef]
- Huang, G.H.; Baetz, B.W.; Patry, G.G. Grey fuzzy dynamic programming: Application to municipal solid waste management planning problems. Civil Eng. Environ. Syst. 1994, 11, 43–73. [Google Scholar] [CrossRef]
- Kall, P.; Wallace, S.W. Stochastic Programming; John Wiley and Sons: Chichester, UK, 1994. [Google Scholar]
- Loucks, D.P.; Stedinger, J.R.; Haith, D.A. Water Resources Systems Planning and Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1981. [Google Scholar]
- Morgan, D.R.; Eheart, J.W.; Valocchi, A.J. Aquifer remediation design under uncertainty using a new chance constrained programming technique. Water Resour. Res. 1993, 29, 551–568. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Symonds, G.H. Cost horizons and certainty equivalents: an approach to stochastic programng of heating oil. Manage. Sci. 1958, 4, 235–263. [Google Scholar] [CrossRef]
- Balintfy, J.L. Nonlinear Programming for Models with Joint Change Constraints. In Integer and Nonlinear Programming; Abadie, J., Ed.; Elsevier: Amsterdam, The Netherlands, 1970; pp. 337–353. [Google Scholar]
- Charnes, A.; Cooper, W.W.; Kirby, P. Chance Constrained Programming: An Extension of Statistical Method. In Optimizing Methods in Statistics; Academic Press: New York, NY, USA, 1972; pp. 391–402. [Google Scholar]
- Jagannathan, R.; Rao, M. A class of nonlinear chance constrained programming models with joint constraints. Oper. Res. 1973, 21, 377–380. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W. Response to decision problems under risk and chance constrained programming: Dilemmas in the transitions. Manag. Sci. 1983, 29, 750–753. [Google Scholar] [CrossRef]
- Ellis, J.H. Stochastic program for identifying critical structure collapse mechanism. Appl. Math. Modell. 1991, 15, 367–379. [Google Scholar] [CrossRef]
- Chakraborty, D. Redefining chance-constrained programming in fuzzy environment. Fuzzy Sets Syst. 2002, 125, 327–333. [Google Scholar] [CrossRef]
- Cooper, W.W.; Deng, H.; Huang, Z.; Li, S.X. A chance constrained programming approach to congestion in stochastic date envelopment analysis. Eur. J. Oper. Res. 2002, 53, 1–10. [Google Scholar]
- Cooper, W.W.; Deng, H.; Huang, Z.; Li, S.X. Chance constrained programming approaches to technical efficiencies and inefficiencies in stochastic date envelopment analysis. J. Oper. Res. Soc. 2002, 53, 1347–1356. [Google Scholar] [CrossRef]
- Gurgur, C.Z.; Luxhoj, J.T. Application of chance-constrained programming to capital rationing problems with asymmetrically distributed cash flows and available budget. Eng. Econ. 2003, 48, 241–258. [Google Scholar] [CrossRef]
- Rong, A.Y.; Lahdelma, R. An efficient linear programming model and optimization algorithm for trigeneration. Appl. Energy 2004, 82, 40–63. [Google Scholar] [CrossRef]
- Rong, A.Y.; Lahdelma, R. An effective heuristic for combined heat-and-power production planning with power ramp constraints. Appl. Energy 2007, 84, 317–325. [Google Scholar] [CrossRef]
- Rong, A.Y.; Lahdelma, R. Fuzzy chance constrained linear programming model for optimizing the scrap charge in steel production. Eur. J. Oper. Res. 2008, 186, 953–964. [Google Scholar] [CrossRef]
- Li, P.; Arellano-Garcia, H.; Wozny, G. Chance constrained programming approach to process optimization under uncertainty. Comput. Chem. Eng. 2008, 32, 25–45. [Google Scholar] [CrossRef]
- Arellano-Garcia, H.; Wozny, G. Chance constrained optimization of process systems under uncertainty: I. Strict monotonicity. Comput. Chem. Eng. 2009, 33, 1568–1583. [Google Scholar] [CrossRef]
- Lenel, U.R.; Davies, D.G.S.; Moore, M.A. Analysing uncertainties of supply and demand in the future use of hydrogen as an energy vector. Int. J. Hydrog. Energy 1983, 8, 871–876. [Google Scholar] [CrossRef]
- Papalexandri, K.P.; Pistikopoulos, E.N.; Kalitventzeff, B. Modelling and optimization aspects in energy management and plant operation with variable energy demands-application to industrial problems. Comput. Chem. Eng. 1998, 22, 1319–1333. [Google Scholar] [CrossRef]
- Entchev, E. Residential fuel cell energy systems performance optimization using ‘soft computing’ techniques. J. Power Sour. 2003, 118, 212–217. [Google Scholar] [CrossRef]
- Krukanont, P.; Tezuka, T. Implications of capacity expansion under uncertainty and value of information: The near-term energy planning of Japan. Energy 2007, 32, 1809–1824. [Google Scholar] [CrossRef]
- Craig, P.P.; Levine, M.D.; Mass, J. Uncertainty—an argument for more stringent energy conservation. Energy 1980, 10, 1073–1083. [Google Scholar] [CrossRef]
- Pena-Taveras, M.S.; Cambel, A.B. Nonlinear, stochastic model for energy investment in manufacturing. Energy 1989, 14, 421–433. [Google Scholar] [CrossRef]
- Bakirtzis, A.G.; Gavanidou, E.S. Optimum operation of a small autonomous system with unconventional energy sources. Electr. Power Syst. Res. 1992, 23, 93–102. [Google Scholar] [CrossRef]
- Goumas, M.G.; Lygerou, V.A.; Papayannakis, L.E. Computational methods for planning and evaluating geothermal energy projects. Energy Policy 1999, 27, 147–154. [Google Scholar] [CrossRef]
- Gamou, S.; Yokoyama, R.; Ito, K. Optimal unit sizing of cogeneration systems in consideration of uncertain energy demands as continuous random variables. Energy Convers. Manag. 2002, 43, 1349–1361. [Google Scholar] [CrossRef]
- Falcão, A.F.O. Stochastic modelling in wave power-equipment optimization: maximum energy production versus maximum profit. Ocean Eng. 2004, 31, 1407–1421. [Google Scholar] [CrossRef]
- Beraldi, P.; Conforti, D.; Violi, A. A two-stage stochastic programming model for electric energy producers. Comput. Oper. Res. 2008, 35, 3360–3370. [Google Scholar] [CrossRef]
- Krey, V.; Martinsen, D.; Wagner, H.J. Effects of stochastic energy prices on long-term energy-economic scenarios. Energy 2007, 32, 2340–2349. [Google Scholar] [CrossRef]
- Nürnberg, R.; Römisch, W. A two-stage planning model for power scheduling in a hydro-thermal system under uncertainty. Optim. Eng. 2002, 3, 355–378. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, Y.H.; Moon, I. Optimization of a hydrogen supply chain under demand uncertainty. Int. J. Hydrog. Energy 2008, 33, 4715–4729. [Google Scholar] [CrossRef]
- Yang, N.; Yu, C.W.; Wen, F.S.; Chung, C.Y. An investigation of reactive power planning based on chance constrained programming. Int. J. Electr. Power Energy Syst. 2007, 29, 650–656. [Google Scholar] [CrossRef]
- Arun, P.; Banerjee, R.; Bandyopadhyay, S. Optimum sizing of photovoltaic battery systems incorporating uncertainty through design space approach. Sol. Energy 2009, 83, 1013–1025. [Google Scholar] [CrossRef]
- Held, H.; Kriegler, E.; Lessmann, K.; Edenhofer, O. Efficient climate policies under technology and climate uncertainty. Energy Econ. 2009, 31, 50–61. [Google Scholar] [CrossRef]
- Moore, R.E. Method and Application of Interval Analysis; SIAM: Philadelphia, PA, USA, 1979. [Google Scholar]
- Huang, G.H.; Baetz, B.W.; Patry, G.G. A grey fuzzy linear programming approach for municipal solid waste management planning under uncertainty. Civil Eng. Environ. Syst. 1993, 10, 123–146. [Google Scholar] [CrossRef]
- Huang, G.H.; Baetz, B.W.; Patry, G.G. Grey integer pogramming: An application to waste management planning under uncertainty. Eur. J. Oper. Res. 1995, 83, 594–620. [Google Scholar] [CrossRef]
- Huang, G.H.; Baetz, B.W.; Patry, G.G. Grey quadratic programming and its application to municipal waste management planning under uncertainty. Eng. Optim. 1995, 23, 210–223. [Google Scholar] [CrossRef]
- Jansson, C. A self-validating method for solving linear programming problems with interval input data. Comput Suppl. 1988, 6, 33–34. [Google Scholar]
- Urli, B.; Nadeau, R. Multiobjective Stochastic Linear Programming with Incomplete Information: A General Methodology. In Stochastic versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty; Slowinski, R., Teghem, J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990; pp. 131–162. [Google Scholar]
- Matloka, M. Some generalization of inexact linear programming. Optimization 1992, 23, 1–6. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, X.W. Grey nonlinear programming in river water quality. J. Hydrol. 1993, 12, 121–131. [Google Scholar]
- Yeh, S.C. Application of Grey Programming to Water Resources Management; Technical Report; School of Civil and Environmental Engineering, Cornell University: Ithaca, NY, USA, 1995. [Google Scholar]
- Sugimoto, T.; Fukushima, M.; Ibaraki, T. A parallel relaxation method for quadratic programming problems with interval constraints. J. Comput. Appl. Math. 1995, 60, 219–233. [Google Scholar] [CrossRef]
- Huang, G.H.; Baetz, B.W.; Patry, G.G. A grey linear programming approach for municipal solid waste management planning under uncertainty. Civil Eng. Environ. Syst. 1992, 9, 319–335. [Google Scholar] [CrossRef]
- Huang, G.H.; Baetz, B.W.; Patry, G.G.; Terluk, V. Capacity planning for an integrated waste management system under uncertainty: A North American case study. Waste Manag. Res. 1997, 15, 523–546. [Google Scholar] [CrossRef]
- Huang, G.H.; Cohen, S.J.; Yin, Y.Y.; Bass, B. Land resources adaptation planning under changing climate—a study for the Mackenzie Basin. Resour Conserv. Recycl. 1998, 24, 95–119. [Google Scholar] [CrossRef]
- Huang, G.H.; Linton, J.D.; Yeomans, J.S.; Yoogalingam, R. Policy planning under uncertainty: efficient starting populations for simulation-optimization methods applied to municipal solid waste management. J. Environ. Manag. 2005, 77, 22–34. [Google Scholar] [CrossRef]
- Bass, B.; Huang, G.H.; Russo, J. Incorporation climate change into risk assessment using grey mathematical programming. J. Environ. Manag. 1997, 49, 107–123. [Google Scholar] [CrossRef]
- Chi, G.F. Integrated Planning of a Solid Waste Management System in the City of Regina. M.Sc. Thesis, Program of Environmental Systems Engineering, University of Regina, Regina, Saskatchewan, Canada, 1997. [Google Scholar]
- Liu, L. Development of Environmental Modeling Methodologies for the Management of Regional and Industrial Pollution Control Systems. Ph.D. Thesis, Faculty of Engineering, University of Regina, Regina, Saskatchewan, Canada, 2001. [Google Scholar]
- Noureldin, M.B.; Hasan, A.K. Global energy targets and optimal operating conditions for waste energy recovery in Bisphenol-A plant. Appl. Therm. Eng. 2006, 26, 374–381. [Google Scholar] [CrossRef]
- Voivontas, D.; Assimacopoulos, D.; Mourelatos, A.; Corominas, J. Evaluation of Renewable Energy potential using a GIS decision support system. Renew. Energy 1998, 13, 333–344. [Google Scholar] [CrossRef]
- Mitchell, C.P. Development of decision support systems for bioenergy applications. Biomass Bioenergy 2000, 18, 265–278. [Google Scholar] [CrossRef]
- Pohekar, S.D.; Ramachandran, M. Application of multi-criteria decision making to sustainable energy planning—A review. Renew. Sustain. Energy Rev. 2004, 8, 365–381. [Google Scholar] [CrossRef]
- Zouros, N.; Contaxis, G.C.; Kabouris, J. Decision support tool to evaluate alternative policies regulating wind integration into autonomous energy systems. Energy Policy 2005, 33, 1541–1555. [Google Scholar] [CrossRef]
- Domínguez, J.; Amador, J. Geographical information systems applied in the field of renewable energy sources. Comput. Ind. Eng. 2007, 52, 322–326. [Google Scholar] [CrossRef]
- Higgs, G.; Berry, R.; Kidner, D.; Langford, M. Using IT approaches to promote public participation in renewable energy planning: Prospects and challenges. Land Use Policy 2008, 25, 596–607. [Google Scholar] [CrossRef]
- Carrión, J.A.; Estrella, A.E.; Dols, F.A.; Toro, M.Z.; Rodríguez, M.; Ridao, A.R. Environmental decision-support systems for evaluating the carrying capacity of land areas: Optimal site selection for grid-connected photovoltaic power plants. Renew. Sustain. Energy Rev. 2008, 12, 2358–2380. [Google Scholar] [CrossRef]
- Ramírez-Rosado, I.J.; García-Garrido, E.; Fernández-Jiménez, L.A.; Zorzano-Santamaría, P.J.; Monteiro, C.; Miranda, V. Promotion of new wind farms based on a decision support system. Renew. Energy 2008, 33, 558–566. [Google Scholar] [CrossRef]
- Simão, A.; Densham, P.J.; Haklay, M. Web-based GIS for collaborative planning and public participation: An application to the strategic planning of wind farm sites. J. Environ. Manag. 2009, 90, 2027–2040. [Google Scholar] [CrossRef]
- Lootsma, F.A.; Meisner, J.; Schellemans, F. Multi-criteria decision analysis as a strategic planning of Energy R and D. Eur. J. Oper. Res. 1986, 25, 216–234. [Google Scholar] [CrossRef]
- Harhammer, P.G.; Infanger, G.M. Decision support system—operation planning. Int. J. Electr. Power Energy Syst. 1989, 11, 155–160. [Google Scholar] [CrossRef]
- Arellano, V.M.; Iglesias, E.R.; Arellano, J.; Schwarzblat, M. Developments in geothermal energy in Mexico—Part twenty-one. ANAPPRES V1.0: A computerized expert system for interference well-test analysis in geothermal reservoirs. Heat Recover. Syst. CHP 1989, 9, 101–113. [Google Scholar]
- Robin, C.; Brau, J.; Roux, J.J. Integration of expert knowledge and simulation tools for the thermal design of buildings and energy systems. Energy Build. 1993, 20, 167–175. [Google Scholar] [CrossRef]
- Clarke, J.A.; Grant, A.D. Planning support tools for the integration of renewable energy at the regional level. Renew. Energy 1996, 9, 1090–1093. [Google Scholar] [CrossRef]
- Georgopoulou, E.; Sarafidis, Y.; Diakoulaki, D. Design and implementation of a group DSS for sustaining renewable energies exploitation. Eur. J. Oper. Res. 1998, 109, 483–500. [Google Scholar] [CrossRef]
- Kim, B.S.; Degelman, L.O. An interface system for computerized energy analyses for building designers. Energy Build. 1998, 27, 97–107. [Google Scholar] [CrossRef]
- Rylatt, M.; Gadsden, S.; Lomas, K. GIS-based decision support for solar energy planning in urban environments. Comput. Environ. Urban Syst. 2001, 25, 579–603. [Google Scholar] [CrossRef]
- van Groenendaal, W.J.H. Group decision support for public policy planning. Inf. Manag. 2003, 40, 371–380. [Google Scholar] [CrossRef]
- Freppaz, D.; Minciardi, R.; Robba, M.; Rovatti, M.; Sacile, R.; Taramasso, A. Optimizing forest biomass exploitation for energy supply at a regional level. Biomass Bioenergy 2004, 26, 15–25. [Google Scholar] [CrossRef]
- Ayoub, N.; Martins, R.; Wang, K.F.; Seki, H.; Naka, Y. Two levels decision system for efficient planning and implementation of bioenergy production. Energy Conver. Manag. 2007, 48, 709–723. [Google Scholar] [CrossRef]
- Cherni, J.A.; Dyner, I.; Henao, F.; Jaramillo, P.; Smith, R.; Font, R.O. Energy supply for sustainable rural livelihoods. A multi-criteria decision-support system. Energy Policy 2007, 35, 1493–1504. [Google Scholar]
- Yue, C.D.; Yang, G.G.L. Decision support system for exploiting local renewable energy sources: A case study of the Chigu area of southwestern Taiwan. Energy Policy 2007, 35, 383–394. [Google Scholar] [CrossRef]
- Blanco, C.J.C.; Secretan, Y.; Mesquita, A.L.A. Decision support system for micro-hydro power plants in the Amazon region under a sustainable development perspective. Energy Sustain. Dev. 2008, 12, 25–33. [Google Scholar] [CrossRef]
- Panichelli, L.; Gnansounou, E. GIS-based approach for defining bioenergy facilities location: A case study in Northern Spain based on marginal delivery costs and resources competition between facilities. Biomass Bioenergy 2008, 32, 289–300. [Google Scholar] [CrossRef]
- Patlitzianas, K.D.; Pappa, A.; Psarras, J. An information decision support system towards the formulation of a modern energy companies’ environment. Renew. Sustain. Energy Rev. 2008, 12, 790–806. [Google Scholar] [CrossRef]
- Aydin, N.Y.; Kentel, E.; Duzgun, S. GIS-based environmental assessment of wind energy systems for spatial planning: A case study from Western Turkey. Renew. Sustain. Energy Rev. 2009. [Google Scholar] [CrossRef]
- Frombo, F.; Minciardi, R.; Robba, M.; Sacile, R. A decision support system for planning biomass-based energy production. Energy 2009, 34, 362–369. [Google Scholar] [CrossRef]
- Vainio, P.; Tokola, T.; Palander, T.; Kangas, A. A GIS-based stand management system for estimating local energy wood supplies. Biomass Bioenergy 2009, 33, 1278–1288. [Google Scholar] [CrossRef]
- Zimmermann, H.J. Fuzzy Sets and Decision Analysis; Elsevier Science: Amsterdam, The Netherlands, 1984. [Google Scholar]
- Wang, S.; Huang, G.H.; Lu, H.W.; Li, Y.P. An interval-valued fuzzy linear programming with infinite α-cuts method for environmental management under uncertainty. Stoch. Environ. Res. Risk Assess. 2011, 25, 211–222. [Google Scholar] [CrossRef]
- Dong, C.; Huang, G.H.; Cai, Y.P.; Xu, Y. An interval-parameter minimax regret programming approach for power management systems planning under uncertainty. Appl. Energy 2011, 88, 2835–2845. [Google Scholar] [CrossRef]
- Cai, Y.P.; Huang, G.H.; Tan, Q.; Yang, Z.F. An integrated approach for climate-change impact analysis and adaptation planning under multi-level uncertainties—Part I: Methodology. Renew. Sustain. Energy Rev. 2011, 15, 2779–2790. [Google Scholar] [CrossRef]
- Cai, Y.P.; Huang, G.H.; Tan, Q.; Liu, L. An integrated approach for climate-change impact analysis and adaptation planning under multi-level uncertainties—Part II: Case study. Renew. Sustain. Energy Rev. 2011, 15, 3051–3073. [Google Scholar] [CrossRef]
- Li, G.C.; Huang, G.H.; Lin, Q.G.; Zhang, X.D.; Tan, Q.; Chen, Y.M. Development of a GHG-mitigation oriented inexact dynamic model for regional energy system management. Energy 2011, 36, 3388–3398. [Google Scholar] [CrossRef]
- Li, Y.P.; Huang, G.H.; Chen, X. An interval-valued minimax-regret analysis approach for the identification of optimal greenhouse-gas abatement strategies under uncertainty. Energy Policy 2011, 39, 4313–4324. [Google Scholar] [CrossRef]
- Xie, Y.L.; Li, Y.P.; Huang, G.H.; Li, Y.F.; Chen, L.R. An inexact chance-constrained programming model for water quality management in Binhai New Area of Tianjin, China. Sci. Total Environ. 2011, 409, 1757–1773. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.P.; Huang, G.H. Optimization of regional economic and environmental systems under fuzzy and random uncertainties. J. Environ. Manag. 2011, 92, 2010–2020. [Google Scholar] [CrossRef]
- Cao, M.F.; Huang, G.H. Scenario-based methods for interval linear programming problems. J. Environ. Inf. 2011, 17, 65–74. [Google Scholar] [CrossRef]
- Chen, B.; Chen, G.Q. Exergy analysis for resource conversion of the Chinese society 1993 under the material product system. Energy 2006, 31, 1115–1150. [Google Scholar] [CrossRef]
- Chen, B.; Chen, G.Q.; Yang, Z.F.; Jiang, M.M. Ecological footprint accounting for energy and resource in China. Energy Policy 2007, 35, 1599–1609. [Google Scholar] [CrossRef]
- Chen, B.; Chen, G.Q.; Yang, Z.F. Exergy-based resource accounting for China. Ecol Model 2006, 196, 313–328. [Google Scholar]
- Gao, S.; Chen, B.; Yang, Z.F.; Huang, G.H. Network environ analysis of spatial arrangement for reserves in Wuyishan Nature Reserve, China. J. Environ. Inf. 2010, 15, 74–86. [Google Scholar]
- Yan, X.P.; Ma, X.F.; Huang, G.H.; Wu, C.Z. An inexact transportation planning model for supporting vehicle emissions management. J. Environ. Inf. 2010, 15, 87–98. [Google Scholar]
- Cai, Y.P.; Huang, G.H.; Tan, Q.; Yang, Z.F. Optimal planning of energy management systems under multiple uncertainties. Appl. Energy 2009, 86, 480–495. [Google Scholar] [CrossRef]
- Huang, G.H.; Baetz, B.W. Grey quadratic-programming and its application to municipal solid-waste management planning under uncertainty. Eng. Optim. 1995, 23, 201–223. [Google Scholar]
- Liu, L.; Huang, G.H.; Liu, Y. A fuzzy-stochastic robust programming model for regional air quality management under uncertainty. Eng. Optim. 2003, 35, 177–199. [Google Scholar] [CrossRef]
- Huang, G.H.; Baetz, B.W.; Patry, G.G. Capacity planning for an integrated waste management system under uncertainty: A North American case study. Waste Manag. Res. 1997, 15, 523–546. [Google Scholar] [CrossRef]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zeng, Y.; Cai, Y.; Huang, G.; Dai, J. A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty. Energies 2011, 4, 1624-1656. https://doi.org/10.3390/en4101624
Zeng Y, Cai Y, Huang G, Dai J. A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty. Energies. 2011; 4(10):1624-1656. https://doi.org/10.3390/en4101624
Chicago/Turabian StyleZeng, Yong, Yanpeng Cai, Guohe Huang, and Jing Dai. 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty" Energies 4, no. 10: 1624-1656. https://doi.org/10.3390/en4101624
APA StyleZeng, Y., Cai, Y., Huang, G., & Dai, J. (2011). A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty. Energies, 4(10), 1624-1656. https://doi.org/10.3390/en4101624