Closing the Global Energy and Nutrient Cycles through Application of Biogas Residue to Agricultural Land – Potential Benefits and Drawback
Abstract
:1. Biogas residue
2. Effects of biogas residue on soil microbiology and quality
3. Effects of biogas residue on plant growth
4. Post-treatment of biogas residue
5. Monitoring the application of biogas residue to arable land
6. Conclusions and future challenges
Acknowledgements
References
- Clemens, J.; Trimborn, M.; Weiland, P.; Amon, B. Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agr. Ecosyst. Environ. 2006, 112, 171–177. [Google Scholar] [CrossRef]
- Båth, B.; Rämert, B. Organic household wastes as a nitrogen source in leek production. Acta. Agr. Scand. Sect. B-Soil Pl. 2000, 49, 201–208. [Google Scholar] [CrossRef]
- Nyberg, K.; Sundh, I.; Johansson, M.; Schnürer, A. Presence of potential ammonia oxidation (PAO) inhibiting substances in anaerobic digestion residues. Applied. Soil Ecol. 2004, 26, 107–112. [Google Scholar] [CrossRef]
- Davis, J.; Haglund, C. Life cycle inventory (LCI) of fertiliser production. Fertiliser products used in Sweden and western Europe; Chalmers University of Technology: Göteborg, Sweden, 1999. [Google Scholar]
- Kongshaug, G. Energy consumption and greenhouse gas emissions in fertilizer production. In IFA technical conference; Marrakech, Morocco, 1998; p. 18. [Google Scholar]
- Patyk, A. Balance of energy consumption and emissions of fertilizer production and supply. In International conference of life cycle assessment in agriculture, food and non-food agro-industry and forestry: Achievements and prospects; Brussels, Belgium, 1996. [Google Scholar]
- Gerardi, M.H. The microbiology of anaerobic digesters; John Wiley & Sons, Inc: Hoboken, NJ, U.S.A., 2003. [Google Scholar]
- Börjesson, G.; Samuelsson, J.; Chanton, J.; Adolfsson, R.; Galle, B.; Svensson, B.H. A national landfill methane budget for Sweden based on field measurements, and an evaluation of IPCC models. Tellus 2009, 61B, 424–435. [Google Scholar] [CrossRef]
- Hjelmar, O. Disposal strategies for municipal solid waste incineration residues. J. Hazard. Mater. 1996, 47, 345–368. [Google Scholar] [CrossRef]
- Rivard, C.J.; Rodriguez, J.B.; Nagle, N.J.; Self, J.R.; Kay, B.D.; Soltanpour, P.N.; Nieves, R.A. Anaerobic digestion of municipal solid waste. Utility of process residues as a soil amendment. Appl. Biochem. Biotech. 1995, 51-52, 125–135. [Google Scholar] [CrossRef]
- Tiwari, V.N.; Tiwari, K.N.; Upadhyay, R.M. Effect of crop residues and biogas slurry incorporation in wheat on yield and soil fertility. J. Indian Soc. Soil Sci. 2000, 48, 515–520. [Google Scholar]
- Wang, Y.; Shen, F.; Liu, R.; Wu, L. Effects of anaerobic fermentation residue of biogas production on the yield and quality of Chinese cabbage and nutrient accumulations in soil. Int. J. Glob. Energy Issues 2008, 29, 284–293. [Google Scholar] [CrossRef]
- Adediran, J.A.; De Baets, N.; Mnkeni, P.N.S.; Kiekens, L.; Muyima, N.Y.O.; Thys, A. Organic waste materials for soil fertility improvement in the border region of the Eastern Cape, South Africa. Biological Agric. Hortic. 2003, 20, 283–300. [Google Scholar] [CrossRef]
- Odlare, M. Organic residues. In A resource for arable soils; Swedish University of Agricultural Sciences: Uppsala,Sweden, 2005. [Google Scholar]
- Monnet, F. An introduction to anaerobic digestion of organic wastes. In Remade Scotland; Final Report Biogasmax; 2003. [Google Scholar]
- Svensson, K.; Odlare, M.; Pell, M. The fertilizing effect of compost and biogas residues from source separated household waste. J. Agric. Sci. 2004, 142, 461–467. [Google Scholar] [CrossRef]
- Palm, O. The quality of liquid and solid digestate from biogas plants and its application in agriculture. In ECN/ORBIT e.V. Workshop The future for Anaerobic Digestion of Organic Waste in Europe; Pres. Nr. 20; 2008. [Google Scholar]
- Perez, M.; Romero, L.I.; Sales, D. Steady state anaerobic thermophilic degradation of distillery wastewater in fluidized bed bioreactors. Biotechnol. Progr. 1997, 13, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Gallert, C.; Henning, A.; Winter, J. Scale-up of anaerobic digestion of the biowaste fraction from domestic wastes. Water Res. 2003, 37, 1433–1441. [Google Scholar] [CrossRef]
- De la Rubia, M.A.; Pérez, M.; Romero, L.I.; Sales, D. Effects of solids retention time (SRT) on pilot scale anaerobic thermophilic sludge digestion. Proc. Biochem. 2006, 41, 79–86. [Google Scholar] [CrossRef]
- Forster-Carneiro, T.; Pérez García, M.; Romero García, L.I. Composting potential of different inoculum sources on modified SEBAC system treatment of municipal solid wastes. Bioresour. Technol. 2007, 98, 3354–3366. [Google Scholar] [CrossRef] [PubMed]
- Voca, N.; Kricka, T.; Cosic, T.; Rupic, V.; Jukic, Z.; Kalambura, S. Digested residue as a fertilizer after the mesophilic process of anaerobic digestion. Plant Soil Environ. 2005, 51, 262–266. [Google Scholar]
- Morsing, M. The use of sludge in forestry and agriculture: A comparison of the legislation in different countries. In Forest Landscape Res.; Danish Forest & Landscape Research Institute: Lungby, Denmark, 1994; No. 5. [Google Scholar]
- Council Directive 86/278/EEC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. In EEC.; 1986.
- Engwall, M.; Schnürer, A. Fate of Ah-receptor agonists in organic household waste during anaerobic degradation-estimation of levels using EROD induction in organ cultures of chick embryo livers. Sci. Total Environ. 2002, 27, 105–108. [Google Scholar] [CrossRef]
- Olsman, H.; Björnfoth, H.; van Bavel, B.; Lindström, G.; Schnürer, A.; Engwall, M. Characterisation of dioxin-like compounds in anaerobically digested organic material by bioassay-directed fractionation. Organohal. Comp. 2002, 58, 345–348. [Google Scholar]
- Nilsson, M.L. Occurence and fate of organic contaminants in waste; Swedish University of Agricultural Sciences: Uppsala,Sweden, 2000. [Google Scholar]
- Angelidaki, I.; Mogensen, A.S.; Ahring, B.K. Degradation of organic contaminants found in organic waste. Biodegradation 2000, 11, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, M.-L.; Waldeback, M.; Liljegren, G.; Kylin, H.; Markides, K.E. Pressurized-fluid extraction (PFE) of chlorinated paraffins from the biodegradable fraction of source-separated household waste. Fresenius J. Anal. Chem. 2001, 370, 913–918. [Google Scholar] [CrossRef] [PubMed]
- Levén, L.; Nyberg, K.; Korkea-aho, L.; Schnürer, A. Phenols in anaerobic digestion processes and inhibition of ammonia oxidising bacteria (AOB) in soil. Sci. Total Environ. 2006, 364, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Levén, L.; Schnürer, A. Effects of temperature on biological degradation of phenols, benzoates and phtalates under methanogenic conditions. Int. Biodeterior. Biodegrad. 2005, 55, 153–160. [Google Scholar] [CrossRef]
- Nilsson, M.-L.; Kylin, H.; Sundin, P. Major extractable organic compounds in the biologically degradable fraction of fresh, composted and anaerobically digested household waste. Acta Agric Scand, B Soil Plant Sci. 2000, 50, 57–65. [Google Scholar] [CrossRef]
- Hartmann, H.; Ahring, B.K. Phthalic acid esters found in municipal organic waste: Enhanced anaerobic degradation under hyper-thermophilic conditions. Water Sci. Technol. 2003, 48, 175–183. [Google Scholar] [PubMed]
- Ejlertsson, J.; Johansson, M.; Karlsson, A.; Meyerson, U.; Svensson, B.H. Anaerobic degradation of xenobiotics by organisms from municipal solid waste under landfilling conditions. Int. J. Gen. Mol. Micr. 1996, 69, 67–74. [Google Scholar] [CrossRef]
- Alexander, M. Biodegradation and bioremediation, 2nd ed.; Academic Press: San Diego, CA, U.S.A., 1999. [Google Scholar]
- Bergström, L.; Stenström, J. Environmental fate of chemicals in soil. Ambio 1998, 27, 16–23. [Google Scholar]
- Enwall, K.; Philippot, L.; Hallin, S. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Appl. Environ. Microbiol. 2005, 71, 8335–8343. [Google Scholar] [CrossRef] [PubMed]
- Girvan, M.S.; Campbell, C.D.; Killham, K.; Prosser, J.I.; Glover, L.A. Bacterial diversity promotes community stability and functional resilience after perturbation. Environ. Microbiol. 2005, 7, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Bagge, E.; Sahlström, L.; Albihn, A. The effect of hygienic treatment on the microbial flora of biowaste at biogas plants. Water Res. 2005, 39, 4879–4886. [Google Scholar] [CrossRef] [PubMed]
- Sahlström, L. A review of survival of pathogenic bacteria in organic waste used in biogas plants. Bioresour. Technol. 2003, 87, 161–166. [Google Scholar] [CrossRef]
- Sahlström, L.; Bagge, E.; Emmoth, E.; Holmqvist, A.; Danielsson-Tham, M.L.; Albihn, A. A laboratory study of survival of selected microorganisms after heat treatment of biowaste used in biogas plants. Bioresour. Technol. 2008, 99, 7859–7865. [Google Scholar] [CrossRef] [PubMed]
- Schnürer, A.; Schnürer, J. Fungal survival during anaerobic digestion of organic household waste. Waste Manag. 2006, 26, 1205–1211. [Google Scholar] [CrossRef] [PubMed]
- OEPP/EPPO. Guidelines for the management of plant health risks of biowaste of plant origin. EPPO Bull. 2008, 38, 4–9. [Google Scholar]
- Marinari, S.; Masciandaro, G.; Ceccanti, B.; Grego, S. Influence of organic and mineral fertilisers on soil biological and physical porperties. Bioresour. Technol. 2000, 72, 9–17. [Google Scholar] [CrossRef]
- Debosz, K.; Petersen, S.O.; Kure, L.K.; Ambus, P. Evaluating effects of sewage sludge and household compost on soil physical and microbial properties. Appl. Soil. Ecol. 2002, 19, 237–248. [Google Scholar] [CrossRef]
- Ostrem, K. Greening waste: anaerobic digestion for treating the organic fraction of municipal solid wastes. M.S. thesis, Columbia University, New York, U.S.A., 2004. [Google Scholar]
- Field, J.A.; Caldwell, J.S.; Jeyanayagam, S.; Reneau Jr., R.B.; Kroontje, W.; Collins Jr., E.R. Fertilizer recovery from anaerobic digesters. Trans. ASAE 1984, 27, 1871–1876. [Google Scholar] [CrossRef]
- Möller, K.; Stinner, W.; Deuker, A.; Leithold, G. Effects of different manuring systems with and without biogas digestion on nitrogen cycle and crop yield in mixed organic dairy farming systems. Nutr. Cycl. Agroecosyst. 2008, 82, 209–232. [Google Scholar] [CrossRef]
- Asmus, F.; Linke, B.; Dunkel, H. Eigenschaften und Düngerwirkung von ausgefaulter Gülle aus der Biogasgewinnung. Arch. Acker-pflanz. Bod. Berlin 1988, 32, 527–532. [Google Scholar]
- Kirchmann, H.; Witter, E. Composition of fresh, aerobic and anaerobic farm animal dungs. Bioresour. Technol. 1992, 40, 137–142. [Google Scholar] [CrossRef]
- Martin, J.H. A comparison of dairy cattle manure management with and without anaerobic digestion and biogas utilization. In Report for the AgSTAR program, US Environmental Protection Agency, contract no 68-W7-0068, task order no 400; 2004; p. 58. [Google Scholar]
- Larsen, K.E. Fertilizer value of anaerobic treated cattle and pig slurry to barley and beet. In Efficient land use of sludge and manure; Kofoed, A.D., Williams, J.H., L´Hermite, P., Eds.; Elsevier Applied Science Publishers: London, U.K., 1986; pp. 56–60. [Google Scholar]
- Messner, H.; Amberger, A. Composition, nitrification and fertilizing effect of anaerobically fermented slurry. In Agricultural waste management and environmental protection: 4th international CIEC symposium; Szabolcs, I., Welte, E., Eds.; Braunschweig, Germany, 1987; pp. 125–130. [Google Scholar]
- Plaixats, J.; Barcelo, J.; Garcia-Moreno, J. Characterization of the effluent residue from anaerobic digestion of pig excreta for its utilization as fertilizer. Agrochemica 1988, 32, 236–239. [Google Scholar]
- Monnet, F. Digested biomass as fertiliser. 2003. Available online: http://www.landbrugsraadet.dk/view.asp?ID=2281.
- Yu, F.; Guan, X.; Zhao, Z.; Zhang, M.; Guo, P.; Pan, J.; Li, S. Application of biogas fermentation residue in Ziziphus jujuba cultivation. Ying Yong Sheng Tai Xue Bao 2006, 17, 345–347. [Google Scholar] [PubMed]
- Hoitink, H.A.J.; Boehm, M.J. Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Ann. Rev. Phytopath. 1999, 37, 427–446. [Google Scholar] [CrossRef] [PubMed]
- Odlare, M.; Pell, M.; Svensson, K. Changes in soil chemical and microbiological properties during 4 years of application of various organic residues. Waste Manag. 2008, 28, 1246–1253. [Google Scholar] [CrossRef] [PubMed]
- Six, J.; Elliott, E.T.; Paustian, K. Soil structure and soil organic matter. Soil Sci. Soc. Am. J. 2000, 64, 1042–1049. [Google Scholar] [CrossRef]
- Jakobsen, S.T. Aerobic decomposition of organic wastes 2. Value of compost as fertilizer. Resour. Conserv. Recycl. 1995, 13, 57–71. [Google Scholar] [CrossRef]
- Joshua, W.D.; Michalk, D.L.; Curtis, I.H.; Salt, M.; Osborne, G.J. The potential for contamination of soil and surface water from sewage sludge (biosolids) in a sheep grazing study. Geoderma 1998, 84, 135–156. [Google Scholar] [CrossRef]
- Pinamonti, F. Compost mulch effects on soil fertility, nutritional status and performance of grapevine. Nutr. Cycl. Agroecosyst. 1998, 51, 148–239. [Google Scholar] [CrossRef]
- Leifeld, J.; Seibert, S.; Kögel-Knabner, I. Biological activity and organic matter mineralization of soils amended with biowaste composts. J. Plant Nutr. Soil Sci. 2002, 165, 151–159. [Google Scholar] [CrossRef]
- Jedidi, N.; Hassen, A.; van Cleemput, O.; M´Hiri, A. Microbial biomass in a soil amended with different types of organic wastes. Waste Manag. Res. 2004, 22, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Blagodatsky, S.A.; Richter, O. Microbial growth in soil and nitrogen turnover: a theoretical model considering the activity state of microorganisms. Soil Biol. Biochem. 1998, 30, 1743–1755. [Google Scholar] [CrossRef]
- Liang, Y.C.; Yang, Y.F.; Yang, C.G.; Shen, Q.Q.; Zhou, J.M.; Zang, L.Z. Soil enzymatic activity and growth of rice and barley as influenced by organic matter in an anthropogenic soil. Geoderma 2003, 115, 149–160. [Google Scholar] [CrossRef]
- Nyberg, K.; Schnürer, A.; Sundh, I.; Jarvis, Å.; Hallin, S. Ammonia-oxidizing communities in agricultural soil incubated with organic waste residues. Biol. Fertil. Soils 2006, 42, 315–323. [Google Scholar] [CrossRef]
- Petersen, S.O.; Henriksen, K.; Mortensen, G.K.; Krogh, P.H.; Brandt, K.K.; Sorensen, J.; Madsen, T.; Petersen, J.; Gron, C. Recycling of sewage sludge and household compost to arable land: Fate and effects of organic contaminants, and impact on soil fertility. Soil Tillage Res. 2003, 72, 139–152. [Google Scholar] [CrossRef]
- Ernst, G.; Müller, A.; Göhler, H.; Emmerling, C. C and N turnover of fermented residues from biogas plants in soil in the presence of three different earthworm species (Lumbricus terrestris, Aporrectodea longa, Aporrectodea caliginosa). Soil Biol. Biochem. 2008, 40, 1413–1420. [Google Scholar] [CrossRef]
- Tuomela, M.; Vikman, M.; Hatakka, A.; Itävaara, M. Biodegradation of lignin in a compost environment: a review. Bioresour. Technol. 2000, 72, 169–183. [Google Scholar] [CrossRef]
- Chaussod, R.; Catrouz, G.; Juste, C. Effects of anaerobic digestion of organic wastes on carbon and nitrogen mineralization rates: laboratory and field experiments. In Efficient land use of sludge and manure; Kofoed, A.D., Williams, J.H., L´Hermite, P., Eds.; Elsevier Applied Science Publishers: London, U.K., 1986; pp. 56–60. [Google Scholar]
- El-Shinnawi, M.M.; El-Tahawi, B.S.; El-Houssieni, M.; Fahmy, S.S. Changes of organic constituents of crop residues and poultry wastes during fermentation for biogas production. Mircen journal 1989, 5, 475–486. [Google Scholar] [CrossRef]
- Steger, K.; Eklind, Y.; Olsson, J.; Sundh, I. Microbial community growth and utilization of carbon constituents during thermophilic composting at different oxygen levels. Microbial Ecol. 2005, 50, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Dahlberg, S.P.; Lindley, J.A.; Giles, J.F. Effects of anaerobic digestion on nutrient availability from dairy manure. Trans ASAE 1988, 31, 1211–1226. [Google Scholar] [CrossRef]
- Demuynck, M.; Nyns, E.J.; Naveau, H. Use of digested effluents in agriculture. In Long-term effects of sewage sludge and farm slurries applications; Williams, J.H., Guidi, G., L´Hermite, P., Eds.; Elsevier Applied Science Publishers: Essex, UK, 1985; pp. 2–13. [Google Scholar]
- Juste, C.; Dureau, P.; Lasserre, M. Influence de la digestion méthanique sur la valeur fertilisante de divers déchets organiques. Compt. Rend. Scean. Acad. Agricul. France 1981, 6, 782–790. [Google Scholar]
- Loria, E.R.; Sawyer, J.E. Extractable soil phosphorus and inorganic nitrogen following application of raw and anaerobically digested swine manure. Agron. J. 2005, 97, 879–885. [Google Scholar] [CrossRef]
- Rubaek, G.H.; Henriksen, K.; Petersen, J.; Rasmussen, B.; Sommer, S.G. Effects of application technique and anaerobic digestion on gaseous nitrogen loss from animal slurry applied to ryegrass (Lolium perenne). J. Agric. Sci. 1996, 126, 481–492. [Google Scholar] [CrossRef]
- Kay, J.; Mitchell, D. Suitability of the liquid produced from anaerobic digestion as a fertiliser; Energy Technology Support Unit; Department of Trade and Industry: London, U.K., 1997. [Google Scholar]
- Smith, J.L.; Elliot, L.F. Tillage and residue management effects on organic matter dynamics in semi-arid regions. Adv. Soil Sci. 1990, 13, 69–88. [Google Scholar]
- Prasad, R.; Power, J.F. Crop residue management. Adv. Soil Sci. 1991, 15, 205–251. [Google Scholar]
- Pathak, H.; Kushwaha, J.S.; Jain, M.C. Evaluation of manurial value of biogas spent slurry composted with dry mango leaves, wheat straw and rock phosphate on wheat crop. J. Indian Soc. Soil Sci. 1992, 40, 753–757. [Google Scholar]
- Salyers, A.A.; Gupta, A.; Wang, Y. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol. 2004, 12, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.P.; Letey, J. Organic farming: challenge of timing nitrogen availability to crop nitrogen requirements. Soil Sci. Soc. Am. J. 2000, 64, 247–253. [Google Scholar] [CrossRef]
- Berry, P.M.; Sylvester-Bradley, R.; Philips, L.; Hatch, D.J.; Cuttle, S.P.; Rayns, F.W.; Gosling, P. Is the productivity of organic farms restricted by the supply of available nitrogen? Soil Use Manage. 2002, 18, 248–255. [Google Scholar] [CrossRef]
- Möller, K.; Habermeyer, J.; Zinkernagel, V.; Reents, H.J. Impact and interaction of nitrogen and Phytophtora infestans as yield-limiting and yield-reducing factors in organic potato (Solanum tuberosum L.) crops. Potato Res. 2006, 49, 281–301. [Google Scholar] [CrossRef]
- Möller, K.; Reents, H.J.; Maidl, F.X. Einfluss von Zwischenfruchtanbau und verschiedenen Saatzeiten von Getreide als Nachfrucht von Kartoffeln auf Nitratdynamik im Boden und das Wachstum von Getreide im ökologischen Landbau. Pflanzenbauwissenschaften 2006, 10, 45–59. [Google Scholar]
- Möller, K.; Stinner, W. Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides). Eur. J. Agron 2009, 30, 1–16. [Google Scholar] [CrossRef]
- Montemurro, F.; Canali, S.; Convertini, G.; Ferri, D.; Tittarelli, F.; Vitti, C. Anaerobic digestates application on fodder crops: effects on plant and soil. Agrochemica 2008, 52, 297–312. [Google Scholar]
- Kocar, G. Anaerobic digesters: from waste to energy crops as an alternative energy source. Energy Sour.t A: Recov. Util. Environ. Effects 2008, 30, 660–669. [Google Scholar] [CrossRef]
- Chantigny, M.H.; Angers, D.A.; Bélanger, G.; Rochette, P.; Eriksen-Hamel, N.; Bittman, S.; Buckley, K.; Massé, D.; Gasser, M.-O. Yield and nutrient export of grain corn fertilized with raw and treated liquid swine manure. Agron. J. 2008, 100, 1303–1309. [Google Scholar] [CrossRef]
- Garg, R.N.; Pathak, H.; Das, D.K.; Tomar, R.K. Use of flyash and biogas slurry for improving wheat yield and physical properties of soil. Environ. Monit. Assess. 2005, 107, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Marchain, U. Biogas process for sustainable development. In FAO Agricultural Service Bulletin 9-5; Food and Agricultural Organization: Rome, Italy, 1992. [Google Scholar]
- Furukawa, Y.; Hasegawa, H. Response of spinach and komatsuna to biogas effluent made from source-separated kitchen garbage. J. Environ. Qual. 2006, 35, 1939–1947. [Google Scholar] [CrossRef] [PubMed]
- Masse, D.I.; Croteau, F.; Masse, L. The fate of crop nutrients during digestion of swine manure in psychrophilic anaerobic sequencing batch reactors. Bioresour. Technol. 2007, 98, 2819–2823. [Google Scholar] [CrossRef] [PubMed]
- El-Shakweer, M.H.A.; El-Sayad, E.A.; Ewees, M.S.A. Soil and plant analysis as a guide for interpretation of the improvement efficiency or organic conditioners added to different soils in Egypt. Commun. Soil Sci. Plant Anal. 1998, 29, 2067–2088. [Google Scholar] [CrossRef]
- Poggi-Varaldo, H.M.; Trejo-Espino, J.; Fernandez-Villagomez, G.; Esparza-Garcia, F.; Caffarel-Mendez, S.; Rinderknecht-Seijas, N. Quality of anaerobic compost from paper mill and municipal solid wastes for soil amendment. Water Sci. Technol. 1999, 40, 179–186. [Google Scholar] [CrossRef]
- Tiquia, S.M.; Tam, N.F.Y.; Hodgkiss, I.J. Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Environ. Pollut. 1996, 93, 249–256. [Google Scholar] [CrossRef]
- Wang, W. Ammonia toxicity to macrophytes (common duckweed and rice) using stating and renewal methods. Environ. Tox. Chem. 1991, 10, 1173–1177. [Google Scholar] [CrossRef]
- Smet, E.; Van-Langenhore, H.; De-Bo, I.Z. The emission of volatile compounds during the aerobic and the combine anaerobic/aerobic composting of biowaste. Atmos. Environ. 1998, 33, 1295–1303. [Google Scholar] [CrossRef]
- Tchobanoglous, G.; Kreith, F.; Williams, M.E. Introduction. In Handbook of solid waste management, (second edition); Tchobanoglous, G., Kreith, F., Eds.; McGraw-Hill Professional: New York, NY, U.S.A., 2002. [Google Scholar]
- Abdullahi, Y.A.; Akunna, J.C.; White, N.A.; Hallett, P.D.; Wheatley, R. Investigating the effects of anaerobic and aerobic post-treatment on quality and stability of organic fraction of municipal solid waste as soil amendment. Bioresour. Technol. 2008, 99, 8631–8636. [Google Scholar] [CrossRef] [PubMed]
- Schulze, E.D.; de Vries, W.; Hauhs, M.; Rosen, K.; Rasmussen, L.; Tamm, C.O.; Nilsson, J. Critical loads for nitrogen deposition on forest ecosystems. Water Air Soil Pollut. 1989, 48, 451–456. [Google Scholar] [CrossRef]
- Döhler, H. Laboratory and field experiments for estimating ammonia losses from pig and cattle slurry following application. In Odour and ammonia emissions from livestock farming. Proceedings of a seminar; Elsevier: Silsoe, UK, 1991; pp. 132–140. [Google Scholar]
- Misselbrook, T.H.; Scholefield, D.; Parkinson, R. Using time domain reflectometry to characterize cattle and pig slurry infiltration into soil. Soil Use Manag. 2005, 21, 167–172. [Google Scholar] [CrossRef]
- Misselbrook, T.H.; Nicholson, F.A.; Chambers, B.J. Predicting ammonia losses following the application of livestock manure to land. Bioresour. Technol. 2005, 96, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Sommer, S.G.; Hutchings, N.J. Ammonia emission from field applied manure and its reduction - invited paper. Eur. J. Agron. 2001, 15, 1–15. [Google Scholar] [CrossRef]
- Pain, B.F.; Thompson, R.B.; Rees, Y.J.; Skinner, J.H. Reducing gaseous losses of nitrogen from cattle slurry applied to grassland by the use of additives. J. Sci. Food Agric. 1990, 50, 141–153. [Google Scholar] [CrossRef]
- Masse, L.; Masse, D.I.; Beaudette, V.; Muir, M. Particle size distribution and characteristics of raw and anaerobically digested swine manure slurry. In ASAE/CSAE Meeting Presentation. paper number 044085 2004.
- Dahlin, S.; Kirchmann, H.; Kätterer, T.; Gunnarsson, S.; Bergström, L. Possibilities for improving nitrogen use from organic materials in agricultural cropping systems. Ambio 2005, 34, 288–295. [Google Scholar] [PubMed]
- Drury, C.F.; Reynolds, W.D.; Tan, C.S.; Welacky, T.W.; Calder, W.; McLaughlin, N.B. Emissions of nitrous oxide and carbon dioxide. Soil Sci. Soc. Am. J. 2006, 70, 570–581. [Google Scholar] [CrossRef]
- Amon, B.; Moitzi, G.; Schimpl, M.; Kryvoruchko, V.; Wagner-Alt, C. Methane, Nitrous Oxide and Ammonia emissions from management of liquid manures, Final report 2002. On behalf of "Federal Ministry of Agriculture, Forestry, Environmental and Water management" and "Federal Ministry of Education, Science and Culture"; Research project No 1107. BMLF GZ 24.002/24-IIA1a/98, extension GZ 24.002/33-IIA1a/00; Vienna, Austria, 2002. [Google Scholar]
- Merz, H.U. Untersuchungen zur wirkung von unbehandelter und methanvergorener rindergülle auf den N-umsatz unter Dactylis glomerata L. sowie auf das keimverhalten verschiedener pflansenarten. Dissertation der Fakultät III, Agrarwissenschaften I der Universität Hohenheim, Stuttgart, Germany, 1988. [Google Scholar]
- Reinhold, G.; Klimanek, E.M.; Breitschuh, G. Zum einfluss der biogaserzeugung auf veränderungen in der kohlenstoffdynamik von Gülle. Arch Acker-pflanz. Bod. 1991, 35, 129–137. [Google Scholar]
- Kirchmann, H.; Bernal, M.P. Organic waste treatment and C stabilization efficiency. Soil Biol. Biochem 1997, 29, 1747–1753. [Google Scholar] [CrossRef]
- Clemens, J.; Huschka, A. The effect of biological oxygen demand of cattle slurry and soil moisture on nitrous oxide emissions. Nutr. Cycl Agroecosyst. 2001, 59, 193–198. [Google Scholar] [CrossRef]
- Oenema, O.; Wrage, N.; Velthof, G.L.; Groenigen, J.W.; van Dolfing, J.; Kuikman, P.J. Trends in global nitrous oxide emissions from animal production systems. Nutr. Cycl. Agroecosyst. 2005, 72, 51–65. [Google Scholar] [CrossRef]
- Artursson, V.; Finlay, R.D.; Jansson, J.K. Combined bromodeoxyuridine immunocapture and terminal-restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomus mosseae inoculation or plant species. Environ. Microbiol. 2005, 7, 1952–1966. [Google Scholar] [CrossRef] [PubMed]
- Artursson, V.; Jansson, J.K. Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae. Appl. Environ. Microbiol. 2003, 69, 6208–6215. [Google Scholar] [CrossRef] [PubMed]
- Throbäck, I.N.; Enwall, K.; Jarvis, Å.; Hallin, S. Reassessing PCR primers targeting nirK, nirS and nosZ genes for molecular diversity surveys of denitrifying bacteria, and the analysis of community structure with DGGE. FEMS Microbiol. Ecol. 2004, 49, 401–417. [Google Scholar] [CrossRef] [PubMed]
- Enwall, K. Community ecology of denitrifying bacteria in arable land. Doctoral thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2008. [Google Scholar]
- Torstensson, L. Microbial assays in soils. In Soil ecotoxicology; Tarradellas, Ed.; J. CRC Press: Boca Raton, FL, U.S.A., 1997. [Google Scholar]
- Arthurson, V. Bacterial-fungal interactions highlighted using microbiomics: potential application for plant growth enhancement. Doctoral thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2005. [Google Scholar]
- Hough, B.R.; Smith, M.J.; Britten, R.J.; Davidson, E.H. Sequence complexity of heterogeneous nuclear RNA in sea urchin embryos. Cell 1975, 5, 291–299. [Google Scholar] [CrossRef]
- Narayan, R.K.J.; Rees, H. Nuclear DNA variation in Lathyrus. Chrmosoma 1976, 54, 141–154. [Google Scholar] [CrossRef]
- Curtis, T.P.; Sloan, W.T.; Scannell, J.W. Estimating prokaryotic diversity and its limits. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 10494–10499. [Google Scholar] [CrossRef] [PubMed]
- Jönsson, O. Biogas upgrading and use as transport fuel; Swedish Gas Centre: Malmoe, Sweden, 2001. [Google Scholar]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Arthurson, V. Closing the Global Energy and Nutrient Cycles through Application of Biogas Residue to Agricultural Land – Potential Benefits and Drawback. Energies 2009, 2, 226-242. https://doi.org/10.3390/en20200226
Arthurson V. Closing the Global Energy and Nutrient Cycles through Application of Biogas Residue to Agricultural Land – Potential Benefits and Drawback. Energies. 2009; 2(2):226-242. https://doi.org/10.3390/en20200226
Chicago/Turabian StyleArthurson, Veronica. 2009. "Closing the Global Energy and Nutrient Cycles through Application of Biogas Residue to Agricultural Land – Potential Benefits and Drawback" Energies 2, no. 2: 226-242. https://doi.org/10.3390/en20200226
APA StyleArthurson, V. (2009). Closing the Global Energy and Nutrient Cycles through Application of Biogas Residue to Agricultural Land – Potential Benefits and Drawback. Energies, 2(2), 226-242. https://doi.org/10.3390/en20200226