Abstract
Under the condition of gas–liquid two-phase flow, traditional sucker rod pumps are prone to gas locking due to the high compressibility of gas, and their volumetric efficiency is usually less than 30%, which seriously restricts the exploitation benefits of oil wells. To solve this difficult problem, this study proposes a variable-diameter tube pump structure that adopts an optimized cone angle of the pump cylinder. The results of computational fluid dynamics simulations using dynamic mesh modeling indicate that the stepped change in the pump barrel diameter can enhance the gas–liquid separation effect caused by vortices, while the flow-guiding grooves on the valve seat can reduce the response delay. Comparative calculations and analyses show that compared with the traditional design, its head increases to 13.89 m, and the hydraulic power rises to 1431.01 W, respectively, representing an increase of 17%. This is attributed to the reduction in the gas retention time during piston reciprocation and the stability of the flow field. This structural innovation effectively alleviates the gas lock problem and provides a feasible approach for improving energy efficiency in oil wells prone to vaporization, which is of great significance in oilfield development operations.