Geopolitical Shocks and the Global Energy System: Mechanisms of Spillover Transmission
Abstract
1. Introduction
2. Literature Review
3. Statistical Analysis and Methodology
3.1. Data
3.2. Methodology
4. Static Spillover Results and Analysis
4.1. Static Spillover Results and Analysis in the Time Domain
4.2. Static Spillover Results and Analysis in Frequency Domain
5. Dynamic Spillover Results and Analysis
5.1. Overall Dynamic Spillover Results and Analysis in the Time-Frequency Domain
5.2. Dynamic Net Spillover Results and Analysis in Time-Frequency Domain
6. Spillover Results and Analysis in Sub Sample Time Domain
6.1. Comparative Static Spillover Result Analysis
6.2. Directed Connectedness Network
6.3. Spillover Results and Analysis of Geopolitical Risk Sub-Indices
7. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Asadi, M.; Roubaud, D.; Tiwari, A.K. Volatility spillovers amid crude oil, natural gas, coal, stock, and currency markets in the US and China based on time and frequency domain connectedness. Energy Econ. 2022, 109, 105961. [Google Scholar] [CrossRef]
- Bazzi, S.; Blattman, C. Economic shocks and conflict: Evidence from commodity prices. Am. Econ. J. Macroecon. 2014, 6, 1–38. [Google Scholar] [CrossRef]
- Jia, W.; Lyu, Y.; Zhu, Z. The tail risk of crude oil Price_Based on EPU and geopolitical risk perspective. Resour. Policy 2024, 92, 105012. [Google Scholar] [CrossRef]
- Gong, X.; Xu, J. Geopolitical risk and dynamic connectedness between commodity markets. Energy Econ. 2022, 110, 106028. [Google Scholar] [CrossRef]
- Diebold, F.X.; Yilmaz, K. Better to give than to receive: Predictive directional measurement of volatility spillovers. Int. J. Forecast. 2012, 28, 57–66. [Google Scholar] [CrossRef]
- Baruník, J.; Křehlík, T. Measuring the frequency dynamics of financial connectedness and systemic risk. J. Financ. Econom 2018, 16, 271–296. [Google Scholar] [CrossRef]
- Jiang, W.; Chen, Y. The time-frequency connectedness among carbon, traditional/new energy and material markets of China in pre-and post-COVID-19 outbreak periods. Energy 2022, 246, 123320. [Google Scholar] [CrossRef]
- Jiang, W.; Dong, L.; Liu, X. How does COVID-19 affect the spillover effects of green finance, carbon markets, and renewable/non-renewable energy markets? Evidence from China. Energy 2023, 281, 128351. [Google Scholar] [CrossRef]
- Jin, J.; Han, L.; Wu, L.; Zeng, H. The hedging effect of green bonds on carbon market risk. Int. Rev. Financ. Anal. 2020, 71, 101509. [Google Scholar] [CrossRef]
- Terhorst, P.; Erkuş-Öztürk, H. Resilience to the global economic and Turkish (geo) political crisis compared. Tijdschr. Voor Econ. En Soc. Geogr. 2019, 110, 138–155. [Google Scholar] [CrossRef]
- Kostaridou, E.; Siatis, N.; Zafeiriou, E. Resource Price Interconnections and the Impact of Geopolitical Shocks Using Granger Causality: A Case Study of Ukraine–Russia Unrest. J. Risk Financ. Manag. 2024, 17, 240. [Google Scholar] [CrossRef]
- Lybeck, E. The Black Swan: The Impact of the Highly Improbable; Penguin Books Ltd.: London, UK, 2017. [Google Scholar]
- Bremer, L.P., III. Geopolitical risk assessment in times of turmoil. Tulsa J. Comp. Int’l L 1996, 4, 117. [Google Scholar]
- Caldara, D.; Iacoviello, M. Measuring geopolitical risk. Am. Econ. Rev. 2022, 112, 1194–1225. [Google Scholar] [CrossRef]
- Raza Rabbani, M.; Hassan, M.K.; Jamil, S.A.; Sahabuddin, M.; Shaik, M. Revisiting the impact of geopolitical risk on Sukuk, stocks, oil and gold markets during the crises period: Fresh evidence from wavelet-based approach. Manag. Financ. 2024, 50, 514–533. [Google Scholar] [CrossRef]
- Zeng, H.; Xu, W.; Lu, R. Quantile frequency connectedness between crude oil volatility, geopolitical risk and major agriculture and livestock markets. Appl. Econ. 2024, 57, 3345–3360. [Google Scholar] [CrossRef]
- Enamul Hoque, M.; Soo Wah, L.; Azlan Shah Zaidi, M. Oil price shocks, global economic policy uncertainty, geopolitical risk, and stock price in Malaysia: Factor augmented VAR approach. Econ. Res.-Ekon. Istraživanja 2019, 32, 3701–3733. [Google Scholar]
- Su, C.-W.; Khan, K.; Tao, R.; Nicoleta-Claudia, M. Does geopolitical risk strengthen or depress oil prices and financial liquidity? Evidence from Saudi Arabia. Energy 2019, 187, 116003. [Google Scholar] [CrossRef]
- Su, C.-W.; Qin, M.; Tao, R.; Moldovan, N.-C. Is oil political? From the perspective of geopolitical risk. Def. Peace Econ. 2021, 32, 451–467. [Google Scholar] [CrossRef]
- Ozkan, O.; Saleem, A.; Khan, N.; Alola, A.A. Global impact of geopolitical oil price uncertainty and associated commodity prices on clean energy stocks. Energy Environ. 2024, 36, 3501–3526. [Google Scholar] [CrossRef]
- Khan, K.; Su, C.-W.; Tao, R. Does oil prices cause financial liquidity crunch? Perspective from geopolitical risk. Def. Peace Econ. 2021, 32, 312–324. [Google Scholar] [CrossRef]
- Liu, J.; Ma, F.; Tang, Y.; Zhang, Y. Geopolitical risk and oil volatility: A new insight. Energy Econ. 2019, 84, 104548. [Google Scholar] [CrossRef]
- Bouoiyour, J.; Selmi, R.; Hammoudeh, S.; Wohar, M.E. What are the categories of geopolitical risks that could drive oil prices higher? Acts or threats? Energy Econ. 2019, 84, 104523. [Google Scholar] [CrossRef]
- Mei, D.; Ma, F.; Liao, Y.; Wang, L. Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models. Energy Econ. 2020, 86, 104624. [Google Scholar] [CrossRef]
- Liu, Y.; Han, L.; Xu, Y. The impact of geopolitical uncertainty on energy volatility. Int. Rev. Financ. Anal. 2021, 75, 101743. [Google Scholar] [CrossRef]
- Swyngedouw, E. Globalisation or ‘glocalisation’? Networks, territories and rescaling. Camb. Rev. Int. Aff. 2004, 17, 25–48. [Google Scholar] [CrossRef]
- Huang, J.; Ding, Q.; Zhang, H.; Guo, Y.; Suleman, M.T. Nonlinear dynamic correlation between geopolitical risk and oil prices: A study based on high-frequency data. Res. Int. Bus. Financ. 2021, 56, 101370. [Google Scholar] [CrossRef]
- Huber, M.T. Enforcing scarcity: Oil, violence, and the making of the market. In The New Geographies of Energy; Routledge: London, UK, 2013; pp. 115–125. [Google Scholar]
- Mamman, S.O.; Iliyasu, J.; Ahmed, U.A.; Salami, F. Global uncertainties, geopolitical risks and price exuberance: Evidence from international energy market. OPEC Energy Rev. 2024, 48, 96–107. [Google Scholar] [CrossRef]
- Korotayev, A.; Bilyuga, S.; Belalov, I.; Goldstone, J. Oil prices, socio-political destabilization risks, and future energy technologies. Technol. Forecast. Soc. Change 2018, 128, 304–310. [Google Scholar] [CrossRef]
- Abdel-Latif, H.; El-Gamal, M. Antecedents of war: The geopolitics of low oil prices and decelerating financial liquidity. Appl. Econ. Lett. 2019, 26, 765–769. [Google Scholar] [CrossRef]
- Umar, M.; Farid, S.; Naeem, M.A. Time-frequency connectedness among clean-energy stocks and fossil fuel markets: Comparison between financial, oil and pandemic crisis. Energy 2022, 240, 122702. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, H.; Yang, C.; Guo, Y. Time and frequency dynamics of connectedness and hedging performance in global stock markets: Bitcoin versus conventional hedges. Res. Int. Bus. Financ. 2021, 58, 101479. [Google Scholar] [CrossRef]
- Farid, S.; Kayani, G.M.; Naeem, M.A.; Shahzad, S.J.H. Intraday volatility transmission among precious metals, energy and stocks during the COVID-19 pandemic. Resour. Policy 2021, 72, 102101. [Google Scholar] [CrossRef]
- Bagheri, E.; Ebrahimi, S.B.; Mohammadi, A.; Miri, M.; Bekiros, S. The dynamic volatility connectedness structure of energy futures and global financial markets: Evidence from a novel time–frequency domain approach. Comput. Econ. 2022, 59, 1087–1111. [Google Scholar] [CrossRef]
- Li, Y.; Huang, J.; Gao, W.; Zhang, H. Analyzing the time-frequency connectedness among oil, gold prices and BRICS geopolitical risks. Resour. Policy 2021, 73, 102134. [Google Scholar] [CrossRef]
- Sun, C.; Ding, D.; Fang, X.; Zhang, H.; Li, J. How do fossil energy prices affect the stock prices of new energy companies? Evidence from Divisia energy price index in China’s market. Energy 2019, 169, 637–645. [Google Scholar] [CrossRef]







| Median | Standard Deviation | Max | Min | Skewness | Kurtosis | ADF | |
|---|---|---|---|---|---|---|---|
| coal | 2.80 × 10−4 | 0.03 | 0.82 | −0.51 | 4.31 | 197.55 | −46.91 *** |
| oil | 9.51 × 10−5 | 0.03 | 0.35 | −0.49 | −1.46 | 41.59 | −21.61 *** |
| gas | 6.71 × 10−5 | 0.04 | 0.28 | −0.22 | 0.56 | 6.99 | −47.87 *** |
| GPR | −1.58 × 10−5 | 0.45 | 2.34 | −2.99 | −0.03 | 5.75 | −22.44 *** |
| Affected by other variables | |||||
| Impact on other variables |
| Coal | Oil | Gas | GPR | FROM | |
|---|---|---|---|---|---|
| coal | 83.97 | 5.77 | 5.40 | 4.86 | 16.03 |
| oil | 5.48 | 80.72 | 6.51 | 7.29 | 19.28 |
| gas | 5.56 | 5.86 | 82.31 | 6.27 | 17.69 |
| GPR | 3.99 | 4.67 | 4.22 | 87.12 | 12.88 |
| TO | 15.03 | 16.29 | 16.13 | 18.43 | 65.87 |
| NET | −1.00 | −2.99 | −1.56 | 5.55 | TCI = 16.47 |
| High Frequency (1 Days to 5 Days) | |||||
|---|---|---|---|---|---|
| Coal | Oil | Gas | GPR | FROM | |
| coal | 65.39 | 4.30 | 3.92 | 3.91 | 12.13 |
| oil | 4.29 | 66.72 | 5.33 | 6.37 | 15.98 |
| gas | 4.41 | 4.61 | 67.70 | 5.55 | 14.57 |
| GPR | 3.90 | 4.58 | 4.13 | 84.81 | 12.61 |
| TO | 12.60 | 13.49 | 13.37 | 15.83 | 55.29 |
| NET | 0.47 | −2.49 | −1.20 | 3.23 | TCI = 13.82 |
| Intermediate frequency (5 days to 30 days) | |||||
| coal | oil | gas | GPR | FROM | |
| coal | 14.81 | 1.10 | 1.05 | 0.81 | 2.96 |
| oil | 0.92 | 11.42 | 0.95 | 0.78 | 2.65 |
| gas | 0.81 | 0.97 | 11.91 | 0.62 | 2.40 |
| GPR | 0.08 | 0.08 | 0.09 | 2.13 | 0.26 |
| TO | 1.81 | 2.16 | 2.09 | 2.21 | 8.27 |
| NET | −1.15 | −0.49 | −0.31 | 1.95 | TCI = 2.07 |
| Low frequency (30 days to Inf days) | |||||
| coal | oil | gas | GPR | FROM | |
| coal | 3.77 | 0.36 | 0.43 | 0.14 | 0.93 |
| oil | 0.28 | 2.58 | 0.23 | 0.15 | 0.65 |
| gas | 0.34 | 0.28 | 2.70 | 0.09 | 0.71 |
| GPR | 0.01 | 0.01 | 0.01 | 0.18 | 0.02 |
| TO | 0.62 | 0.65 | 0.66 | 0.38 | 2.30 |
| NET | −0.31 | 0.00 | −0.05 | 0.36 | TCI = 0.58 |
| Coal | Oil | Gas | GPR | FROM | |
|---|---|---|---|---|---|
| Panel A: Oil Crisis (January 2015 to December 2015) | |||||
| coal | 74.44 | 7.45 | 5.15 | 12.96 | 25.56 |
| oil | 4.56 | 75.49 | 4.21 | 15.74 | 24.51 |
| gas | 2.51 | 3.79 | 75.94 | 17.77 | 24.06 |
| GPR | 2.17 | 1.29 | 1.18 | 95.36 | 4.64 |
| TO | 9.24 | 12.53 | 10.54 | 46.46 | 78.77 |
| NET | −16.32 | −11.98 | −13.52 | 41.82 | TCI = 19.69 |
| Panel B: China US Trade Friction (June 2017 to June 2018) | |||||
| coal | 75.25 | 3.86 | 5.36 | 15.53 | 24.75 |
| oil | 3.17 | 76.32 | 5.45 | 15.06 | 23.68 |
| gas | 2.91 | 4.00 | 82.67 | 10.42 | 17.33 |
| GPR | 3.16 | 1.57 | 1.95 | 93.32 | 6.68 |
| TO | 9.24 | 9.42 | 12.76 | 41.01 | 72.44 |
| NET | −15.51 | −14.25 | −4.57 | 34.33 | TCI = 18.11 |
| Panel C: COVID-19 (October 2019 to October 2020) | |||||
| coal | 77.26 | 8.69 | 4.97 | 9.09 | 22.74 |
| oil | 3.06 | 85.16 | 4.23 | 7.54 | 14.84 |
| gas | 3.25 | 5.65 | 80.92 | 10.18 | 19.08 |
| GPR | 1.36 | 2.77 | 2.41 | 93.46 | 6.54 |
| TO | 7.67 | 17.10 | 11.62 | 26.81 | 63.20 |
| NET | −15.07 | 2.26 | −7.46 | 20.27 | TCI = 15.80 |
| Panel D: Russo Ukrainian War (October 2021 to October 2022) | |||||
| coal | 78.49 | 9.86 | 4.03 | 7.62 | 21.51 |
| oil | 11.27 | 73.84 | 4.85 | 10.04 | 26.16 |
| gas | 5.23 | 5.93 | 75.51 | 13.33 | 24.49 |
| GPR | 2.13 | 2.39 | 3.08 | 92.40 | 7.60 |
| TO | 18.63 | 18.18 | 11.97 | 30.98 | 79.76 |
| NET | −2.88 | −7.98 | −12.52 | 23.38 | TCI = 19.94 |
| Panel E: Palestinian Israeli Conflict (July 2023 to December 2023) | |||||
| coal | 70.12 | 2.32 | 10.15 | 17.41 | 29.88 |
| oil | 2.81 | 77.26 | 7.06 | 12.88 | 22.74 |
| gas | 3.54 | 7.29 | 73.55 | 15.61 | 26.45 |
| GPR | 1.11 | 3.25 | 2.68 | 92.95 | 7.05 |
| TO | 7.46 | 12.87 | 19.89 | 45.90 | 86.12 |
| NET | −22.42 | −9.88 | −6.55 | 38.85 | TCI = 21.53 |
| Coal | Oil | Gas | GPA | FROM | |
|---|---|---|---|---|---|
| coal | 83.90 | 5.63 | 5.30 | 5.17 | 16.10 |
| oil | 5.67 | 81.96 | 5.90 | 6.48 | 18.04 |
| gas | 5.56 | 5.74 | 82.36 | 6.34 | 17.64 |
| GPA | 3.52 | 4.03 | 3.39 | 89.07 | 10.93 |
| TO | 14.75 | 15.40 | 14.58 | 17.98 | 62.71 |
| NET | −1.35 | −2.63 | −3.06 | 7.04 | TCI = 15.68 |
| coal | oil | gas | GPT | FROM | |
| coal | 84.79 | 5.52 | 5.07 | 4.62 | 15.21 |
| oil | 5.50 | 82.28 | 6.10 | 6.11 | 17.72 |
| gas | 5.48 | 5.71 | 82.81 | 6.00 | 17.19 |
| GPT | 3.57 | 4.64 | 3.74 | 88.05 | 11.95 |
| TO | 14.54 | 15.88 | 14.92 | 16.73 | 62.07 |
| NET | −0.66 | −1.84 | −2.27 | 4.78 | TCI = 15.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xu, Y.; Guo, X.; Jiang, W.; Zhang, Y. Geopolitical Shocks and the Global Energy System: Mechanisms of Spillover Transmission. Energies 2026, 19, 251. https://doi.org/10.3390/en19010251
Xu Y, Guo X, Jiang W, Zhang Y. Geopolitical Shocks and the Global Energy System: Mechanisms of Spillover Transmission. Energies. 2026; 19(1):251. https://doi.org/10.3390/en19010251
Chicago/Turabian StyleXu, Yun, Xiaoliang Guo, Wei Jiang, and Yanyu Zhang. 2026. "Geopolitical Shocks and the Global Energy System: Mechanisms of Spillover Transmission" Energies 19, no. 1: 251. https://doi.org/10.3390/en19010251
APA StyleXu, Y., Guo, X., Jiang, W., & Zhang, Y. (2026). Geopolitical Shocks and the Global Energy System: Mechanisms of Spillover Transmission. Energies, 19(1), 251. https://doi.org/10.3390/en19010251

