Non-Invasive Multivariate Prediction of Human Thermal Comfort Based on Facial Temperatures and Thermal Adaptive Action Recognition
Abstract
:1. Introduction
1.1. Relevant Research
1.2. Main Contributions
1.3. Paper Organization
2. Methods
2.1. Multi-Region Facial Recognition Method
- (1)
- Object detection algorithm
- (2)
- Dataset collection of thermal images
2.2. Thermal Adaptive Action Recognition Method
- (1)
- Action detection algorithm
- (2)
- Dataset collection of skeletal points
- (3)
- Determination of TSV levels corresponding to thermal adaptive actions
2.3. Thermal Comfort Prediction Model
- (1)
- Random forest
- (2)
- Fusion strategy
2.4. Overall Framework
2.5. Data Collection Experiment
- (1)
- Experimental environment and equipments
- (2)
- Subjects and TSV levels
- (3)
- Experiment process and experiment content
3. Results
3.1. Recognition Results of Facial Regions and Temperatures
3.2. Recognition Results of Thermal Adaptive Actions
3.3. Results of Thermal Comfort Prediction
- (1)
- Results of TSV prediction based on facial region temperatures
- (2)
- Results of TSV prediction based on fusion model
- (3)
- Prediction results of fusion model in changed condition (clo/met)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
HVAC | Heating, ventilation, and air conditioning |
PMV | Predicted mean vote |
TSV | Thermal sensation vote |
SVM | Support vector machine |
LR | Logistic regression |
GB | Gradient boosting |
RF | Random forest |
ROI | Region of interest |
Met | Metabolic level |
Clo | Clothing thermal resistance |
Model_Fac_T | Thermal comfort prediction model based on human facial temperature |
Model_Therm_Act | Thermal comfort prediction model based on thermal adaptive action detection |
Indoor temperature | |
Relative humidity | |
Nose temperature | |
Cheek temperature | |
The thermal comfort level predicted by Model_Fac_T | |
The product sum of the predicted action’s voted TSV values | |
PMV value calculated under the ASHRAE standard | |
The fusion result | |
The weight of facial temperature-based TSV prediction | |
The weight of thermal adaptive action prediction | |
The weight of PMV result | |
The mean average precision of facial key-region recognition | |
The TSV prediction accuracy of the RF model (Model_Fac_T) | |
The recognizing accuracy of thermal adaptive actions based on Mediapipe | |
mean average precision calculated at an IoU threshold of 0.5 |
Appendix A
References
- Cao, X.; Dai, X.; Liu, J. Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. Energy Build. 2016, 128, 198–213. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, J.; Ye, S.; Wang, R.; Dong, F.; Feng, Y. Real-time indoor thermal comfort prediction in campus buildings driven by deep learning algorithms. J. Build. Eng. 2023, 78, 107603. [Google Scholar] [CrossRef]
- Abt, E.; Suh, H.H.; Catalano, P.; Koutrakis, P. Relative contribution of outdoor and indoor particle sources to indoor concentrations. Environ. Sci. Technol. 2000, 34, 3579–3587. [Google Scholar] [CrossRef]
- Nafiz, M.; Zaki, S.A.; Nadarajah, P.D.; Singh, M.K. Influence of psychological and personal factors on predicting individual’s thermal comfort in an office building using linear estimation and machine learning model. Adv. Build. Energy Res. 2024, 18, 105–125. [Google Scholar] [CrossRef]
- Iskandaryan, D.; Ramos, F.; Trilles, S. Application of deep learning and machine learning in air quality modeling. In Current Trends And Advances In Computer-Aided Intelligent Environmental Data Engineering; Elsevier: Amsterdam, The Netherlands, 2022; pp. 11–23. [Google Scholar]
- Iskandaryan, D.; Ramos, F.; Trilles, S. Air quality prediction in smart cities using machine learning technologies based on sensor data: A review. Appl. Sci. 2020, 10, 2401. [Google Scholar] [CrossRef]
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Huizenga, C.; Abbaszadeh, S.; Zagreus, L.; Arens, E.A. Air quality and thermal comfort in office buildings: Results of a large indoor environmental quality survey. Proc. Healthy Build. 2006, III, 393–397. [Google Scholar]
- Ma, N.; Zhang, Q.; Murai, F.; Braham, W.W.; Samuelson, H.W. Learning building occupants’ indoor environmental quality complaints and dissatisfaction from text-mining Booking. com reviews in the United States. Build. Environ. 2023, 237, 110319. [Google Scholar] [CrossRef]
- Luo, M.; Wang, Z.; Brager, G.; Cao, B.; Zhu, Y. Indoor climate experience, migration, and thermal comfort expectation in buildings. Build. Environ. 2018, 141, 262–272. [Google Scholar] [CrossRef]
- Luo, T.; He, Q.; Wang, W.; Fan, X. Response of summer Land surface temperature of small and medium-sized cities to their neighboring urban spatial morphology. Build. Environ. 2024, 250, 111198. [Google Scholar] [CrossRef]
- Almagro-Lidón, M.; Pérez-Carramiñana, C.; Galiano-Garrigós, A.; Emmitt, S. Thermal comfort in school children: Testing the validity of the Fanger method for a Mediterranean climate. Build. Environ. 2024, 253, 111305. [Google Scholar] [CrossRef]
- ANSI/ASHRAE Standard 55-2020; Thermal Environmental Conditions for Human Occupancy. ASHRAE: Atlanta, Georgia, 2020.
- ISO 7730: 2005; Ergonomics of the Thermal Environment-Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. ISO: Geneva, Switzerland, 2005.
- Zare, S.; Hasheminezhad, N.; Sarebanzadeh, K.; Zolala, F.; Hemmatjo, R.; Hassanvand, D. Assessing thermal comfort in tourist attractions through objective and subjective procedures based on ISO 7730 standard: A field study. Urban Clim. 2018, 26, 1–9. [Google Scholar] [CrossRef]
- Özbey, M.F.; Turhan, C. A novel comfort temperature determination model based on psychology of the participants for educational buildings in a temperate climate zone. J. Build. Eng. 2023, 76, 107415. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, L.; Zhang, J.; Niu, B.; Luo, M.; Zhou, G.; Zhang, X. Data-driven thermal comfort model via support vector machine algorithms: Insights from ASHRAE RP-884 database. Energy Build. 2020, 211, 109795. [Google Scholar] [CrossRef]
- Sun, J.; Cong, S.; Mao, H.; Zhou, X.; Wu, X.; Zhang, X. Identification of eggs from different production systems based on hyperspectra and CS-SVM. Br. Poult. Sci. 2017, 58, 256–261. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, L.; Huang, C.; Lu, Y.; Wang, C. A dynamic tire model based on HPSO-SVM. Int. J. Agric. Biol. Eng. 2019, 12, 36–41. [Google Scholar] [CrossRef]
- Jiang, L.; Yao, R. Modelling personal thermal sensations using C-Support Vector Classification (C-SVC) algorithm. Build. Environ. 2016, 99, 98–106. [Google Scholar] [CrossRef]
- Luo, M.; Xie, J.; Yan, Y.; Ke, Z.; Yu, P.; Wang, Z.; Zhang, J. Comparing machine learning algorithms in predicting thermal sensation using ASHRAE Comfort Database II. Energy Build. 2020, 210, 109776. [Google Scholar] [CrossRef]
- Xu, Q.; Cai, J.R.; Zhang, W.; Bai, J.W.; Li, Z.Q.; Tan, B.; Sun, L. Detection of citrus Huanglongbing (HLB) based on the HLB-induced leaf starch accumulation using a home-made computer vision system. Biosyst. Eng. 2022, 218, 163–174. [Google Scholar] [CrossRef]
- Yu, J.; Zhangzhong, L.; Lan, R.; Zhang, X.; Xu, L.; Li, J. Ensemble Learning Simulation Method for Hydraulic Characteristic Parameters of Emitters Driven by Limited Data. Agronomy 2023, 13, 986. [Google Scholar] [CrossRef]
- Li, D.; Menassa, C.C.; Kamat, V.R. Personalized human comfort in indoor building environments under diverse conditioning modes. Build. Environ. 2017, 126, 304–317. [Google Scholar] [CrossRef]
- Katić, K.; Li, R.; Zeiler, W. Machine learning algorithms applied to a prediction of personal overall thermal comfort using skin temperatures and occupants’ heating behavior. Appl. Ergon. 2020, 85, 103078. [Google Scholar] [CrossRef] [PubMed]
- Alam, N.; Zaki, S.A.; Ahmad, S.A.; Singh, M.K.; Azizan, A.; Othman, N.A. Machine learning approach for predicting personal thermal comfort in air conditioning offices in Malaysia. Build. Environ. 2024, 266, 112083. [Google Scholar] [CrossRef]
- Nadarajah, P.D.; Lakmal, H.; Singh, M.K.; Zaki, S.A.; Ooka, R.; Rijal, H.; Mahapatra, S. Identification and application of the best-suited machine learning algorithm based on thermal comfort data characteristic: A data-driven approach. J. Build. Eng. 2024, 95, 110319. [Google Scholar] [CrossRef]
- Simone, A.; Kolarik, J.; Iwamatsu, T.; Asada, H.; Dovjak, M.; Schellen, L.; Shukuya, M.; Olesen, B.W. A relation between calculated human body exergy consumption rate and subjectively assessed thermal sensation. Energy Build. 2011, 43, 1–9. [Google Scholar] [CrossRef]
- Metzmacher, H.; Wölki, D.; Schmidt, C.; Frisch, J.; van Treeck, C. Real-time human skin temperature analysis using thermal image recognition for thermal comfort assessment. Energy Build. 2018, 158, 1063–1078. [Google Scholar] [CrossRef]
- Ghahramani, A.; Tang, C.; Becerik-Gerber, B. An online learning approach for quantifying personalized thermal comfort via adaptive stochastic modeling. Build. Environ. 2015, 92, 86–96. [Google Scholar] [CrossRef]
- Aryal, A.; Becerik-Gerber, B. A comparative study of predicting individual thermal sensation and satisfaction using wrist-worn temperature sensor, thermal camera and ambient temperature sensor. Build. Environ. 2019, 160, 106223. [Google Scholar] [CrossRef]
- Huizenga, C.; Zhang, H.; Arens, E.; Wang, D. Skin and core temperature response to partial-and whole-body heating and cooling. J. Therm. Biol. 2004, 29, 549–558. [Google Scholar] [CrossRef]
- Yang, B.; Li, X.; Hou, Y.; Meier, A.; Cheng, X.; Choi, J.H.; Wang, F.; Wang, H.; Wagner, A.; Yan, D.; et al. Non-invasive (non-contact) measurements of human thermal physiology signals and thermal comfort/discomfort poses—A review. Energy Build. 2020, 224, 110261. [Google Scholar] [CrossRef]
- Ghahramani, A.; Castro, G.; Karvigh, S.A.; Becerik-Gerber, B. Towards unsupervised learning of thermal comfort using infrared thermography. Appl. Energy 2018, 211, 41–49. [Google Scholar] [CrossRef]
- Cheng, X.; Yang, B.; Hedman, A.; Olofsson, T.; Li, H.; Van Gool, L. NIDL: A pilot study of contactless measurement of skin temperature for intelligent building. Energy Build. 2019, 198, 340–352. [Google Scholar] [CrossRef]
- Cosma, A.C.; Simha, R. Machine learning method for real-time non-invasive prediction of individual thermal preference in transient conditions. Build. Environ. 2019, 148, 372–383. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, J.; Cao, B. A systematic review of research on personal thermal comfort using infrared technology. Energy Build. 2023, 301, 113666. [Google Scholar] [CrossRef]
- Farokhi, S.; Flusser, J.; Sheikh, U.U. Near infrared face recognition: A literature survey. Comput. Sci. Rev. 2016, 21, 1–17. [Google Scholar] [CrossRef]
- Miura, J.; Demura, M.; Nishi, K.; Oishi, S. Thermal comfort measurement using thermal-depth images for robotic monitoring. Pattern Recognit. Lett. 2020, 137, 108–113. [Google Scholar] [CrossRef]
- Jazizadeh, F.; Jung, W. Personalized thermal comfort inference using RGB video images for distributed HVAC control. Appl. Energy 2018, 220, 829–841. [Google Scholar] [CrossRef]
- Jung, W.; Jazizadeh, F. Vision-based thermal comfort quantification for HVAC control. Build. Environ. 2018, 142, 513–523. [Google Scholar] [CrossRef]
- Cheng, X.; Yang, B.; Olofsson, T.; Liu, G.; Li, H. A pilot study of online non-invasive measuring technology based on video magnification to determine skin temperature. Build. Environ. 2017, 121, 1–10. [Google Scholar] [CrossRef]
- Jeoung, J.; Jung, S.; Hong, T.; Lee, M.; Koo, C. Thermal comfort prediction based on automated extraction of skin temperature of face component on thermal image. Energy Build. 2023, 298, 113495. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, L.; Liu, K.; Yu, S.; Shen, Y.; Sun, D. Non-intrusive personal thermal comfort modeling: A machine learning approach using infrared face recognition. Build. Environ. 2024, 247, 111033. [Google Scholar] [CrossRef]
- Li, K.; Li, W.; Liu, F.; Xue, W. Non-invasive human thermal comfort assessment based on multiple angle/distance facial key-region temperatures recognition. Build. Environ. 2023, 246, 110956. [Google Scholar] [CrossRef]
- Jocher, G.; Nishimura, K.; Mineeva, T.; Vilariño, R. Yolov5. Code Repository. 2020. Available online: https://github.com/ultralytics/yolov5 (accessed on 1 September 2022).
- Meier, A.; Dyer, W.; Graham, C. Using human gestures to control a building’s heating and cooling System. In Energy Efficiency in Domestic Appliances and Lighting (EEDAL’17); European Union: Luxembourg, 2017; pp. 627–635. [Google Scholar]
- Yang, B.; Cheng, X.; Dai, D.; Olofsson, T.; Li, H.; Meier, A. Real-time and contactless measurements of thermal discomfort based on human poses for energy efficient control of buildings. Build. Environ. 2019, 162, 106284. [Google Scholar] [CrossRef]
- Yang, B.; Cheng, X.; Dai, D.; Olofsson, T.; Li, H.; Meier, A. Macro pose based non-invasive thermal comfort perception for energy efficiency. arXiv 2018, arXiv:1811.07690. [Google Scholar]
- Wu, Y.; Cao, B. Recognition and prediction of individual thermal comfort requirement based on local skin temperature. J. Build. Eng. 2022, 49, 104025. [Google Scholar] [CrossRef]
- Cosma, A.C.; Simha, R. Using the contrast within a single face heat map to assess personal thermal comfort. Build. Environ. 2019, 160, 106163. [Google Scholar] [CrossRef]
- Li, D.; Menassa, C.C.; Kamat, V.R. Non-intrusive interpretation of human thermal comfort through analysis of facial infrared thermography. Energy Build. 2018, 176, 246–261. [Google Scholar] [CrossRef]
- Garg, S.; Saxena, A.; Gupta, R. Yoga pose classification: A CNN and MediaPipe inspired deep learning approach for real-world application. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 16551–16562. [Google Scholar] [CrossRef]
- Makhijani, R.; Sagar, S.; Reddy, K.B.P.; Mourya, S.K.; Krishna, J.S.; Kulkarni, M.M. Yoga Pose Rectification Using Mediapipe and Catboost Classifier. In Computer Vision and Machine Intelligence: Proceedings of CVMI 2022; Springer: Berlin/Heidelberg, Germany, 2023; pp. 379–387. [Google Scholar]
- Bucarelli, N.; El-Gohary, N. Deep learning approach for recognizing cold and warm thermal discomfort cues from videos. Build. Environ. 2023, 242, 110277. [Google Scholar] [CrossRef]
- Duan, W.; Wang, Y.; Li, J.; Zheng, Y.; Ning, C.; Duan, P. Real-time surveillance-video-based personalized thermal comfort recognition. Energy Build. 2021, 244, 110989. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, Z.; Zheng, Z.; Zhang, S.; Fang, Z. A review of investigation of the metabolic rate effects on human thermal comfort. Energy Build. 2024, 315, 114300. [Google Scholar] [CrossRef]
- Zhang, H.; Xie, X.; Hong, S.; Lv, H. Impact of metabolism and the clothing thermal resistance on inpatient thermal comfort. Energy Built Environ. 2021, 2, 223–232. [Google Scholar] [CrossRef]
- Ji, W.; Pan, Y.; Xu, B.; Wang, J. A real-time apple targets detection method for picking robot based on ShufflenetV2-YOLOX. Agriculture 2022, 12, 1619. [Google Scholar] [CrossRef]
- Yang, B.; Liu, Y.; Liu, P.; Wang, F.; Cheng, X.; Lv, Z. A novel occupant-centric stratum ventilation system using computer vision: Occupant detection, thermal comfort, air quality, and energy savings. Build. Environ. 2023, 237, 110332. [Google Scholar] [CrossRef]
- Zhang, Q.; Bao, X.; Sun, S.; Lin, F. Lightweight network for small target fall detection based on feature fusion and dynamic convolution. J. Real-Time Image Process. 2024, 21, 17. [Google Scholar] [CrossRef]
- Lugaresi, C.; Tang, J.; Nash, H.; McClanahan, C.; Uboweja, E.; Hays, M.; Zhang, F.; Chang, C.L.; Yong, M.; Lee, J.; et al. Mediapipe: A framework for perceiving and processing reality. In Proceedings of the Third Workshop on Computer Vision for AR/VR at IEEE Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 17 June 2019; Volume 2019, pp. 1–4. [Google Scholar]
- Bazarevsky, V.; Grishchenko, I.; Raveendran, K.; Zhu, T.; Zhang, F.; Grundmann, M. Blazepose: On-device real-time body pose tracking. arXiv 2020, arXiv:2006.10204. [Google Scholar]
- Singh, A.K.; Kumbhare, V.A.; Arthi, K. Real-time human pose detection and recognition using mediapipe. In International Conference on Soft Computing and Signal Processing; Springer: Singapore, 2021; pp. 145–154. [Google Scholar]
- Min, Z. Human body pose intelligent estimation based on BlazePose. In Proceedings of the 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA), Changchun, China, 25–27 February 2022; IEEE: NewYork, NY, USA, 2022; pp. 150–153. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Aryal, A.; Becerik-Gerber, B. Energy consequences of Comfort-driven temperature setpoints in office buildings. Energy Build. 2018, 177, 33–46. [Google Scholar] [CrossRef]
- GB/T 50785-2012; Evaluation Standard for Indoor Thermal Environment in Civil Buildings. Standardization Administration: Beijing, China, 2012.
Literatures | Detection Object/Image Type | Detection Tool | Thermal Comfort Prediction Model | TSV Class | Accuracy |
---|---|---|---|---|---|
Jeoung et al. (2024) [43] | facial temperature/infrared | YOLOv5 | MLP, GBM, KNN, SVM, RF, DT | 3-class * | 90.26% (MLP) |
Bai et al. (2024) [44] | facial temperature/infrared | Dlib/HRNet | BL, RF, GBM, GBDT, DCF | 3-class | 90.44% (BL) |
Li et al. (2023) [45] | facial temperature/infrared | YOLOv5 | CLPSO-SVM | 7-class ** | 81.65% |
3-class | 85.68% | ||||
Wu et al. (2022) [50] | facial temperature/infrared | not reported | SVM | 2-class | 79.9% |
Cosma et al. (2019) [51] | facial temperature/infrared and RGB | Haar/OpenPose | SVM | 7-class | 76% |
Li et al. (2018) [52] | facial temperature/infrared | Haar Cascade | RF | 3-class | 85% |
Garg et al. (2023) [53] | body action/RGB | Mediapipe | CNN | not reported | 97.09% |
Makhijani et al. (2023) [54] | body action/RGB | Mediapipe | CatBoost | not reported | 98.9% |
Bucarell et al. (2023) [55] | body action/RGB | TensorFlow Object Detection API | ResNet101 + LSTM + MLP | 3-class | 86.7% |
Duan et al. (2021) [56] | body action/RGB | OpenPose | ST-GCN | 3-class | 78% |
Yang et al. (2019) [48] | body action/RGB | OpenPose | not reported | 7-class | 86.37% |
Meier et al. (2017) [47] | body action/RGB | Kinect | not reported | not reported | not reported |
Gender | Age | Height (cm) | Weight (Kg) | BMI (Kg/m2) |
---|---|---|---|---|
Men | 24.4 ±1.58 | 177 ± 6.27 | 69.8 ± 9.23 | 22.28 ± 2.60 |
Female | 23.9 ± 1.35 | 166 ± 2.44 | 56.43 ± 3.51 | 20.37 ± 1.16 |
Experiment | Quantity of Data | Collected Features | Subjects (Times/Subject) | Gender Ratio |
---|---|---|---|---|
I | 168 | , , , | 12 (2) | 7:5 |
II | 140 | , , , , Clo, Met, Thermal adaptive actions | 10 (2) | 3:2 |
III | 70 | , , , , Clo(0.2 clo), Met, Thermal adaptive actions | 5 (2) | 3:2 |
70 | , , , , Clo, Met(2 met), Thermal adaptive actions | 5 (2) | 3:2 | |
70 | , , , , Clo(0.2 clo), Met(2 met), Thermal adaptive actions | 5 (2) | 3:2 |
YOLOv5 | Mediapipe | ||
---|---|---|---|
Size | 640 ∗ 640 | Static_image_mode | False |
Batch size | 16 | Smooth_landmarks | True |
Epoch | 300 | Min_tracking_confidence | 0.5 |
Learning rate | 0.01 | Model_complexity | 1 |
Weight decay | 0.0005 | Min_detection_confidence | 0.5 |
Quantity of Data | Model | Parameter | Accuracy | |
---|---|---|---|---|
7-Class | 3-Class | |||
140 (experiment II) | PMV | , , Clo, Met | 20.71% | 65% |
Model_Fac_T | , , , | 78.57% | 90% | |
Fusion model (total data) | , , | 82.86% | 94.29% | |
Fusion model (actions detected) | , , | 86.8% | 100% |
Quantity of Data | Model | Accuracy | |||||
---|---|---|---|---|---|---|---|
Change Clo | Change Met | Change Clo and Met | |||||
7-Class | 3-Class | 7-Class | 3-Class | 7-Class | 3-Class | ||
210 (experiment III) | PMV | 31.42% | 71.4% | 22.85% | 58.57% | 18.57% | 45.71% |
Model_Fac_T | 74.28% | 91.42% | 54.29% | 81.42% | 57.14% | 87.14% | |
Fusion model (total data) | 75.71% | 92.86% | 74.29% | 92.86% | 75.7% | 94.29% | |
Fusion model (actions detected) | 80% | 100% | 86.38% | 100 % | 80.95 % | 95.24% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Liu, F.; Luo, Y.; Khoso, M.A. Non-Invasive Multivariate Prediction of Human Thermal Comfort Based on Facial Temperatures and Thermal Adaptive Action Recognition. Energies 2025, 18, 2332. https://doi.org/10.3390/en18092332
Li K, Liu F, Luo Y, Khoso MA. Non-Invasive Multivariate Prediction of Human Thermal Comfort Based on Facial Temperatures and Thermal Adaptive Action Recognition. Energies. 2025; 18(9):2332. https://doi.org/10.3390/en18092332
Chicago/Turabian StyleLi, Kangji, Fukang Liu, Yanpei Luo, and Mushtaque Ali Khoso. 2025. "Non-Invasive Multivariate Prediction of Human Thermal Comfort Based on Facial Temperatures and Thermal Adaptive Action Recognition" Energies 18, no. 9: 2332. https://doi.org/10.3390/en18092332
APA StyleLi, K., Liu, F., Luo, Y., & Khoso, M. A. (2025). Non-Invasive Multivariate Prediction of Human Thermal Comfort Based on Facial Temperatures and Thermal Adaptive Action Recognition. Energies, 18(9), 2332. https://doi.org/10.3390/en18092332