Exploration of Shallow Geothermal Resources Based on Gravity and Magnetic 3D Inversion in the Wudalianchi–Laoheishan Volcano and Surrounding Areas
Abstract
:1. Introduction
2. Geological Setting
3. Gravity and Magnetic 3D Joint Inversion Method
4. Wudalianchi Measured Data Processing
4.1. Details of the Gravity Data and Magnetic Data
4.2. Analysis of Inversion Results from Gravity and Magnetic Data
4.3. Joint Interpretation with Seismic Inversion Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, D.; Guo, M. Current Situation and Future Development Trend of Geothermal Resources in China. Chem. Energy 2021, 47, 149–150. [Google Scholar]
- Xu, T.-f.; Hu, Z.-x.; Li, S.-t.; Jiang, Z.-j.; Hou, Z.-y.; Li, F.-y.; Liang, X.; Feng, B. Enhanced geothermal system: International progresses and research status of China. Acta Geol. Sin. 2018, 92, 1936–1947. [Google Scholar]
- Xu, T.-f.; Wen, D.-g.; Yuan, Y.-l. Technical Challenges and Strategy of Geothermal Energy Development from Hot Dry Rock. Earth Sci. 2024, 49, 2131–2147, (In Chinese with English Abstract). [Google Scholar]
- Guiling, W.; Yanguang, L.; Xi, Z.; Wei, Z. The status and development trend of geothermal resources in China. Earth Sci. Front. 2020, 27, 1, (In Chinese with English Abstract). [Google Scholar]
- Tang, X.; Wang, G.; Ma, Y.; Zhang, D.; Liu, Z.; Zhao, X.; Cheng, T. Geological model of heat source and accumulation for geothermal anomalies in the Gonghe basin, northeastern Tibetan Plateau. Acta Geol. Sin. 2020, 94, 2052–2065. [Google Scholar]
- Lin, W.; Chen, X.; Gan, H.; Yue, G. Geothermal, geological characteristics and exploration direction of hot dry rocks in the Xiamen bay-Zhangzhou basin, southeastern China. Acta Geol. Sin. 2020, 94, 2066–2077. [Google Scholar]
- Sun, M.-H.; Zhang, Q.-Z.; Li, D.-M.; Sun, X.-T.; Lin, S.; Wu, X.-K.; Liang, G.-K.; Li, Y.-K.; Guan, Y.-W.; Li, Y.-F. Genesis and occurrence models of hot-dry geothermal resources in Guangxi. Bull. Geol. Sci. Technol. 2022, 41, 330–340, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Zhu, G. Geothermal geological characteristics and genetic model of Hot Dry Rocks in Gonghe Basin, Qinghai Province. Geol. China 2024, 52, 1–17. [Google Scholar]
- Wenjing, L.; Hongping, X.; Song, R.; Yizuo, S.; Qiaoran, Z.; Shunde, H.; Guangming, H. Three-dimensional geothermal geological modeling and geothermal target selection in the central depression and adjacent areas of the Songliao Basin. Chin. J. Geol. 2024, 59, 235–248. [Google Scholar]
- Wang, L.; Ma, X.-w.; Yu, C.-l.; Han, X.-z.; Tian, Y.-l. Understanding and Preliminary Planning for Layer-Controlled Geothermal Resources in Deep Sag of Songliao Basin. Sino-Glob. Energy 2024, 29, 26–33, (In Chinese with English Abstract). [Google Scholar]
- Nouraliee, J.; Porkhial, S.; Mohammadzadeh-Moghaddam, M.; Mirzaei, S.; Ebrahimi, D.; Rahmani, M.R. Investigation of density contrasts and geologic structures of hot springs in the Markazi Province of Iran using the gravity method. Russ. Geol. Geophys. 2015, 56, 1791–1800. [Google Scholar] [CrossRef]
- Mohammadzadeh Moghaddam, M.; Mirzaei, S.; Nouraliee, J.; Porkhial, S. Integrated magnetic and gravity surveys for geothermal exploration in Central Iran. Arab. J. Geosci. 2016, 9, 506. [Google Scholar] [CrossRef]
- Xi, Y.; Wang, G.; Liu, S.; Zhao, Y.; Hu, X. The formation of a geothermal anomaly and extensional structures in Guangdong, China: Evidence from gravity analyses. Geothermics 2018, 72, 225–231. [Google Scholar] [CrossRef]
- Lewerissa, R.; Sismanto, S.; Setiawan, A.; Pramumijoyo, S.; Lapono, L. Integration of gravity and magnetic inversion for geothermal system evaluation in Suli and Tulehu, Ambon, eastern Indonesia. Arab. J. Geosci. 2020, 13, 726. [Google Scholar] [CrossRef]
- Pocasangre, C.; Fujimitsu, Y.; Nishijima, J. Interpretation of gravity data to delineate the geothermal reservoir extent and assess the geothermal resource from low-temperature fluids in the Municipality of Isa, Southern Kyushu, Japan. Geothermics 2020, 83, 101735. [Google Scholar] [CrossRef]
- Zhao, J.; Zeng, Z.; Zhou, S.; Yan, J.; An, B. 3-D Inversion of Gravity Data of the Central and Eastern Gonghe Basin for Geothermal Exploration. Energies 2023, 16, 2277. [Google Scholar] [CrossRef]
- Benfield, A. Terrestrial heat flow in Great Britain. Proc. R. Soc. London Ser. A Math. Phys. Sci. 1939, 173, 428–450. [Google Scholar]
- Bullard, E.C. Heat flow in south Africa. Proc. R. Soc. London Ser. A Math. Phys. Sci. 1939, 173, 474–502. [Google Scholar]
- Davies, J.H. Global map of solid Earth surface heat flow. Geochem. Geophys. Geosystems 2013, 14, 4608–4622. [Google Scholar] [CrossRef]
- Fournier, R.O. Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells. Amer. J. Sci. 1966, 264, 685–697. [Google Scholar] [CrossRef]
- Giggenbach, W.F. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca Geoindicators. Geochim. Cosmochim. Acta 1988, 52, 2749–2765. [Google Scholar] [CrossRef]
- Wu, M. A Comparative Study of Sedimentary Geothermal Water and Volcanic Geothermal Water with Hydrogeochemistry Method—Take Guanzhong Basin and Tengchong Rehai as Examples. Master’s Thesis, Chang’an University, Xi’an, China, 2018. [Google Scholar]
- Zhou, B.; Pan, B.; Yan, L.; Xu, D.; Wu, C. Analysis to the pressure condition of magmatic system from the Late Pleistocene Changbaishan-Tianchi volcanism. Acta Petrol. Sin. 2024, 40, 2075–2086. [Google Scholar] [CrossRef]
- Sheng, S.-z.; Wan, Y.-g.; Jiang, C.-s.; Wang, X.-s.; Liang, S.-s.; Xiao, G.-r.; Hu, X.-h. Study on the crustal stress field of the Tengchong volcanic area using composite focal mechanism method. Appl. Geophys. 2021, 18, 239–252. [Google Scholar] [CrossRef]
- Fan, Q.-c.; Sui, J.-l.; Wang, T.-h.; Li, N.; Sun, Q. History of volcanic activity, magma evolution and eruptive mechanisms of the Changbai volcanic province. Geol. J. China Univ. 2007, 13, 175. [Google Scholar]
- Li, J.; Ye, T.; Zhang, H.; Huang, Q. A multi-geophysical parameter model in Tengchong volcanic area. Chin. J. Geophys. 2021, 64, 3657–3668. [Google Scholar]
- Zhang, J.; Fan, Y.-x.; Chu, W.; He, Y.-b. Changbaishan Tianchi volcano geothermal system: Magma chamber and hidden high-temperature geothermal resources. Acta Seismol. Sin. 2024, 46, 557–577. [Google Scholar]
- Lv, Z. Volcanic structure of the present-day volcanic group Wudalianchi and its forming mechanism. Volcanol. Miner. Resour. 1994, 15, 6–21, (In Chinese with English Abstract). [Google Scholar]
- Chang, C. Application of Gravity Data Comprehensive Processing Methods in Wudalianchi Area. Master’s Thesis, Jilin University, Changchun, China, 2015. (In Chinese with English Abstract). [Google Scholar]
- Li, W.; Yang, M.; Feng, W.; Zhong, M. Improved Approaches for 3D Gravity and Gradient Imaging Based on Potential Field Separation: Application to the Magma Chamber in Wudalianchi Volcanic Field, Northeastern China. Remote Sens. 2024, 16, 1187. [Google Scholar] [CrossRef]
- Xiang, M.; Li, J.-h.; Gao, W.-y.; Zhang, T.-r. Vent Distribution of Wudalianchi Volcanoes Heilongjiang Province, China, and Its Relation to Faults. Geol. J. China Univ. 2010, 16, 226. [Google Scholar]
- Zeng, P.-S.; Qiu, S.-F.; Li, R.-Z.; Liu, S.-W.; Wang, S.-A.; Zhao, J.-J. Sequences Division of Quaternary Volcanic Rocks in Wudalianchi and Its Tectonic and Ecological Significances. Acta Geosci. Sin. 2021, 42, 785–802, (In Chinese with English Abstract). [Google Scholar]
- Wang, J.-y.; Liu, Y.-s.; Pan, M.-H.; Nie, B.-f.; Zou, W.; Lu, Z.; Zhang, X.-y. Topography and Fractal Characteristics and Their Genesis of the Wudalianchi Volcanic Group in Heilongjiang. Geoscience 2024, 38, 793–806, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Xiao, L.; Wang, C. Geologic features of Wudalianchi volcanic field, northeastern China: Implications for Martian volcanology. Planet. Space Sci. 2009, 57, 685–698. [Google Scholar] [CrossRef]
- Zhan, Y.; Zhao, G.; Bai, D.; Jin, G.; Wang, J.; Xuan, F.; Jiang, Z. Preliminary study of Wudalianchi volcanic cluster in Heilongjiang province by MT measurement. Geol. Rev. 1999, 45, 400–408. [Google Scholar]
- Zhan, Y.; Zhao, G.; Wang, J.; Xiao, Q.; Tang, J.; Rokityansky, I. Crustal electric conductivity structure for Wudalianchi volcanic cluster in the Heilongjiang province, China. Acta Petrol. Sin. 2006, 22, 1494–1502. [Google Scholar]
- Zhao, Y.; Zou, W.-D.; Zhou, H. The Analysis of Wudalianchi Volcanoes Hazard. J. Nat. Disasters 1999, 8, 139–146, (In Chinese with English Abstract). [Google Scholar]
- Gao, L.; Zhang, S.-g.; Yan, F. A research of coda in Wudalianchi volcanic area. Seismol. Geomagn. Obs. Res. 2013, 34, 41–46, (In Chinese with English Abstract). [Google Scholar]
- Gao, L.; Yang, X. Analysis of Q value character of seismic body wave in Wudalianchi volcanic area. Seismol. Geomagn. Obs. Res. 2018, 39, 23–29. [Google Scholar]
- Zhang, B.L.; Li, Z.W.; Bao, F.; Deng, Y.; You, Q.Y.; Zhang, S.Q. Shallow shear-wave velocity structures under the Weishan volcanic cone in Wudalianchi volcano field by microtremor survey. Chin. J. Geophys. 2016, 59, 3662–3673. [Google Scholar]
- Li, Z.; Ni, S.; Zhang, B.; Bao, F.; Zhang, S.; Deng, Y.; Yuen, D.A. Shallow magma chamber under the Wudalianchi Volcanic Field unveiled by seismic imaging with dense array. Geophys. Res. Lett. 2016, 43, 4954–4961. [Google Scholar] [CrossRef]
- Zhang, S.; Jia, X.; Zhang, Y.; Li, S.; Li, Z.; Tian, P.; Ming, Y.; Zhang, C. Volcanic magma chamber survey and geothermal geological condition analysis for hot dry rock in the Weishan volcano in Wudalianchi region, Heilongjiang Province. Acta Geol. Sin. 2017, 91, 1506–1521. [Google Scholar]
- Peng, N. Dynamical stability of magma chamber under the modern volcanoes in the Wudalianchi Area. Master’s Thesis, Capital Normal University, Beijing, China, 2004. [Google Scholar]
- Peng, N.; Liu, Y.-s.; Wei, Y.-f. The stability of the magma chamber under Wudalianchi modern volcanoes. Acta Petrol. Mineral. 2005, 24, 197–204. [Google Scholar]
- Lu, S.C. Wudalianchi geothermal research. J. Heilongjiang Inst. Sci. Technol. 2013, 23, 386–389, 393, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Lu, S.C. Wudalianchi geothermal research. Adv. Mater. Res. 2013, 805, 445–451. [Google Scholar] [CrossRef]
- Portniaguine, O.; Zhdanov, M.S. 3-D magnetic inversion with data compression and image focusing. Geophysics 2002, 67, 1532–1541. [Google Scholar] [CrossRef]
- Li, Y.; Oldenburg, D.W. Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method. Geophys. J. Int. 2003, 152, 251–265. [Google Scholar] [CrossRef]
- Davis, K.; Li, Y. Fast solution of geophysical inversion using adaptive mesh, space-filling curves and wavelet compression. Geophys. J. Int. 2011, 185, 157–166. [Google Scholar] [CrossRef]
- Meagher, D. Geometric modeling using octree encoding. Comput. Graph. Image Process. 1982, 19, 129–147. [Google Scholar] [CrossRef]
- Yerry, M.; Shephard, M. A modified quadtree approach to finite element mesh generation. IEEE Comput. Graph. Appl. 1983, 3, 39–46. [Google Scholar] [CrossRef]
- Gross, L. Weighted cross-gradient function for joint inversion with the application to regional 3-D gravity and magnetic anomalies. Geophys. J. Int. 2019, 217, 2035–2046. [Google Scholar] [CrossRef]
- Zhang, R.; Li, T.; Deng, H.; Deng, X.; Shi, H.; Wang, S.; Pak, Y. 2D joint inversion of MT, gravity, magnetic and seismic first-arrival wave traveltime with cross-gradient constraints. Chin. J. Geophys. 2019, 62, 2139–2149. [Google Scholar]
- Vatankhah, S.; Liu, S.; Renaut, R.A.; Hu, X.; Hogue, J.D.; Gharloghi, M. An Efficient Alternating Algorithm for the Lp-Norm Cross-Gradient Joint Inversion of Gravity and Magnetic Data Using the 2-D Fast Fourier Transform. IEEE Trans. Geosci. Remote Sens. 2020, 60, 1–16. [Google Scholar] [CrossRef]
- Fregoso, E.; Palafox, A.; Moreles, M.A. Initializing cross-gradients joint inversion of gravity and magnetic data with a Bayesian surrogate gravity model. Pure Appl. Geophys. 2020, 177, 1029–1041. [Google Scholar] [CrossRef]
- Zhengwen, Y.; Handong, T.; Miao, P.; WenXin, K.; PingPing, W. Three-dimensional joint inversion of gravity, magnetic and magnetotelluric data based on cross-gradient theory. Chin. J. Geophys. 2020, 63, 736–752. [Google Scholar]
- Bosch, M.; Meza, R.; Jiménez, R.; Hönig, A. Joint gravity and magnetic inversion in 3D using Monte Carlo methods. Geophysics 2006, 71, G153–G156. [Google Scholar] [CrossRef]
- Fregoso, E.; Gallardo, L.A. Cross-gradients joint 3D inversion with applications to gravity and magnetic data. Geophysics 2009, 74, L31–L42. [Google Scholar] [CrossRef]
- Tikhonov, A.N.; Arsenin, V.Y. Solutions of Ill-Posed Problems; Winston: New York, NY, USA, 1977. [Google Scholar]
- Willoughby, R.A. Solutions of ill-posed problems (A.N. Tikhonov and V.Y. Arsenin). SIAM Rev. 1979, 21, 266. [Google Scholar] [CrossRef]
- Golub, G.H.; Hansen, P.C.; O’Leary, D.P. Tikhonov regularization and total least squares. SIAM J. Matrix Anal. Appl. 1999, 21, 185–194. [Google Scholar] [CrossRef]
- Li, Y.; Oldenburg, D.W. 3-D inversion of magnetic data. Geophysics 1996, 61, 394–408. [Google Scholar] [CrossRef]
- Li, Y.; Oldenburg, D.W. 3-D inversion of gravity data. Geophysics 1998, 63, 109–119. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, C.; Guan, Y.; Li, X.; Sun, M.; Wu, Y. Exploration of Shallow Geothermal Resources Based on Gravity and Magnetic 3D Inversion in the Wudalianchi–Laoheishan Volcano and Surrounding Areas. Energies 2025, 18, 2011. https://doi.org/10.3390/en18082011
Wei C, Guan Y, Li X, Sun M, Wu Y. Exploration of Shallow Geothermal Resources Based on Gravity and Magnetic 3D Inversion in the Wudalianchi–Laoheishan Volcano and Surrounding Areas. Energies. 2025; 18(8):2011. https://doi.org/10.3390/en18082011
Chicago/Turabian StyleWei, Chunlong, Yanwu Guan, Xiaolong Li, Mingxing Sun, and Yangang Wu. 2025. "Exploration of Shallow Geothermal Resources Based on Gravity and Magnetic 3D Inversion in the Wudalianchi–Laoheishan Volcano and Surrounding Areas" Energies 18, no. 8: 2011. https://doi.org/10.3390/en18082011
APA StyleWei, C., Guan, Y., Li, X., Sun, M., & Wu, Y. (2025). Exploration of Shallow Geothermal Resources Based on Gravity and Magnetic 3D Inversion in the Wudalianchi–Laoheishan Volcano and Surrounding Areas. Energies, 18(8), 2011. https://doi.org/10.3390/en18082011