Two-Stage Multi-Objective Optimal Planning of Hybrid AC/DC Microgrid by Using ϵ-Constraint Method
Abstract
:1. Introduction
1.1. Research Motivation and Research Gaps
1.2. Research Contributions
- The sizing of the ILC is modelled and integrated into the objective function to determine its optimal capacity, recognising its role as a pivotal component of HMGs.
- The degradation of the ILC, which affects the operation of HMGs, is modelled using the Arrhenius equation and fatigue analysis techniques commonly applied to semiconductor devices.
- The optimal planning problem is formulated within the framework of multi-objective optimisation, where the -Constraint method is employed to model and solve the objective functions.
- A reliability index based on energy not supplied (ENS) is proposed and integrated as an objective function to ensure that the planning method and its results adhere to the reliability standards set by the Australian Energy Market Commission.
- The energy throughput concept is implemented as a constraint to mitigate the cyclic ageing of the BESS. Additionally, the calendar ageing of the battery is modelled using an empirical approach.
2. Methodology
2.1. Battery Degradation Modelling
2.1.1. Cyclic Ageing: Energy Throughput Constraint
2.1.2. Calendar Ageing
2.2. ILC Stress Modelling
2.3. Reliability Modelling
2.4. System Constraints
2.4.1. BESS Constraints
2.4.2. ILC Constraints
2.4.3. Upstream Grid Constraint
2.4.4. Reliability Constraints
2.5. Power Balance
2.6. Objective Functions
3. Multi-Objective Optimisation Algorithm
Algorithm 1 -Constraint Multi-Objective Method |
|
4. Case Study and HMG Parameters
5. Results and Discussion
5.1. Scenario 1
5.2. Scenario 2: Without Battery Degradation Consideration
5.3. Scenario 3: Constant ILC Capacity
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, X.; Wang, Z.; Ding, T.; Li, Z. Hybrid AC/DC Microgrid Planning with Optimal Placement of DC Feeders. Energies 2019, 12, 1751. [Google Scholar] [CrossRef]
- Mahmoudian, A.; Taghizadeh, F.; Garmabdari, R.; Mousavizade, M.; Lu, J. Enhancing Interlink Converter Reliability in Energy-Constrained Optimal Energy Management System of Hybrid AC/DC Microgrid. In Proceedings of the 2024 International Conference on Electrical, Computer and Energy Technologies (ICECET), Sydney, Australia, 25–27 July 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Irujo, E.; Berrueta, A.; Sanchis, P.; Ursúa, A. Methodology for comparative assessment of battery technologies: Experimental design, modeling, performance indicators and validation with four technologies. Appl. Energy 2025, 378, 124757. [Google Scholar] [CrossRef]
- Ayub, M.A.; Hussan, U.; Rasheed, H.; Liu, Y.; Peng, J. Optimal energy management of MG for cost-effective operations and battery scheduling using BWO. Energy Rep. 2024, 12, 294–304. [Google Scholar] [CrossRef]
- Hussan, U.; Hassan, M.; Ayub, M.A.; Peng, J.; Rasheed, H.; Jiang, H.; Asghar, F. Smooth and Uninterrupted Operation of Standalone DC Microgrid Under High and Low Penetration of RESs. IEEE Access 2024, 12, 48620–48629. [Google Scholar] [CrossRef]
- Hussan, U.; Wang, H.; Ayub, M.A.; Rasheed, H.; Majeed, M.A.; Peng, J.; Jiang, H. Decentralized Stochastic Recursive Gradient Method for Fully Decentralized OPF in Multi-Area Power Systems. Mathematics 2024, 12, 3064. [Google Scholar] [CrossRef]
- Quizhpe, K.; Arévalo, P.; Ochoa-Correa, D.; Villa-Ávila, E. Optimizing Microgrid Planning for Renewable Integration in Power Systems: A Comprehensive Review. Electronics 2024, 13, 3620. [Google Scholar] [CrossRef]
- Li, F.; Shi, Z.; Zhu, Z.; Gan, Y. Energy Management Strategy for Direct Current Microgrids with Consideration of Photovoltaic Power Tracking Optimization. Energies 2025, 18, 252. [Google Scholar] [CrossRef]
- Valencia-Díaz, A.; Toro, E.M.; Hincapié, R.A. Optimal planning and management of the energy–water–carbon nexus in hybrid AC/DC microgrids for sustainable development of remote communities. Appl. Energy 2025, 377, 124517. [Google Scholar] [CrossRef]
- Naderipour, A.; Saboori, H.; Mehrjerdi, H.; Jadid, S.; Abdul-Malek, Z. Sustainable and reliable hybrid AC/DC microgrid planning considering technology choice of equipment. Sustain. Energy Grids Netw. 2020, 23, 100386. [Google Scholar] [CrossRef]
- Abdelwanis, M.I.; Elmezain, M.I. A comprehensive review of hybrid AC/DC networks: Insights into system planning, energy management, control, and protection. Neural Comput. Appl. 2024, 36, 17961–17977. [Google Scholar] [CrossRef]
- Rezaei, O.; Mirzapour, O.; Panahazari, M.; Gholami, H. Hybrid AC/DC Provisional Microgrid Planning Model Considering Converter Aging. Electricity 2022, 3, 236–250. [Google Scholar] [CrossRef]
- Lotfi, H.; Khodaei, A. Hybrid AC/DC microgrid planning. Energy 2017, 118, 37–46. [Google Scholar] [CrossRef]
- Raza, A.; Chen, Y.; Li, M.; Abouzeid, S.I.; Abdelhameed, E.H. Feasibility and optimal size analysis of off grid hybrid AC-DC microgrid system: Case study of El Kharga Oasis, Egypt. J. Energy Storage 2024, 97, 112721. [Google Scholar] [CrossRef]
- Azizivahed, A.; Gholami, K.; Rupf, G.V.; Arefi, A.; Lund, C.; Walia, J.; Rahman, M.M.; Islam, M.R.; Muyeen, S.; Kamwa, I. Cooperative operational planning of multi-microgrid distribution systems with a case study. Energy Rep. 2024, 11, 2360–2373. [Google Scholar] [CrossRef]
- Khezri, R.; Steen, D.; Wikner, E.; Tuan, L.A. Optimal V2G Scheduling of an EV With Calendar and Cycle Aging of Battery: An MILP Approach. IEEE Trans. Transp. Electrif. 2024, 10, 10497–10507. [Google Scholar] [CrossRef]
- Jia, C.; Zhou, J.; He, H.; Li, J.; Wei, Z.; Li, K.; Shi, M. A novel energy management strategy for hybrid electric bus with fuel cell health and battery thermal- and health-constrained awareness. Energy 2023, 271, 127105. [Google Scholar] [CrossRef]
- Jia, C.; Zhou, J.; He, H.; Li, J.; Wei, Z.; Li, K. Health-conscious deep reinforcement learning energy management for fuel cell buses integrating environmental and look-ahead road information. Energy 2024, 290, 130146. [Google Scholar] [CrossRef]
- Amini, M.; Nazari, M.H.; Hosseinian, S.H. Predictive energy management strategy for battery energy storage considering battery degradation cost. IET Renew. Power Gener. 2023, 17, 1119–1138. [Google Scholar] [CrossRef]
- Hernes, M.; D’Arco, S.; Antonopoulos, A.; Peftitsis, D. Failure analysis and lifetime assessment of IGBT power modules at low temperature stress cycles. IET Power Electron. 2021, 14, 1271–1283. [Google Scholar] [CrossRef]
- Flicker, J.; Johnson, J.; Hacke, P.; Thiagarajan, R. Automating Component-Level Stress Measurements for Inverter Reliability Estimation. Energies 2022, 15, 4828. [Google Scholar] [CrossRef]
- Chen, J.; Deng, E.; Zhang, Y.; Huang, Y. Junction-to-Case Thermal Resistance Measurement and Analysis of Press-Pack IGBTs Under Double-Side Cooling Condition. IEEE Trans. Power Electron. 2022, 37, 8543–8553. [Google Scholar] [CrossRef]
- AEMC. Definition of Unserved Energy. 2025. Available online: https://www.aemc.gov.au/market-reviews-advice/definition-unserved-energy (accessed on 20 January 2025).
- Wang, W.; Li, C.; He, X.; Qiao, X. Economic evaluation of the second-use batteries energy storage system considering the quantification of environmental benefits. J. Energy Storage 2024, 98, 113088. [Google Scholar] [CrossRef]
- Vossos, V.; Gerber, D.; Bennani, Y.; Brown, R.; Marnay, C. Techno-economic analysis of DC power distribution in commercial buildings. Appl. Energy 2018, 230, 663–678. [Google Scholar] [CrossRef]
- Australian Energy Market Operator. Definition of Unserved Energy. 2025. Available online: https://aemo.com.au/en/energy-systems/electricity/national-electricity-market-nem/data-nem/data-dashboard-nem (accessed on 23 January 2025).
- Farzin, H.; Chehrazi, F.; Saniei, M. Multi-objective planning of mobile energy storage unit in active distribution network considering reliability. J. Energy Storage 2025, 109, 115138. [Google Scholar] [CrossRef]
Description | Notation | Value |
---|---|---|
Nominal capacity of the AC-side PV | 500 kW | |
Minimum State of Charge of the BESS | 20% | |
Maximum State of Charge of the BESS | 90% | |
Round trip efficiency of the BESS | 0.9 |
Description | Notation | Value |
---|---|---|
Nominal capacity of the DC-side PV | 300 kW | |
Minimum State of Charge of the BESS | 20% | |
Maximum State of Charge of the BESS | 90% | |
Round trip efficiency of the BESS | 0.9 |
246,907.10 | 0.00 | 7022.66 | 6902.20 | 408.93 | 320.52 | 485.47 |
246,638.22 | 0.08 | 6960.36 | 6992.62 | 427.37 | 359.97 | 503.91 |
246,532.67 | 0.17 | 7105.59 | 6986.52 | 257.54 | 320.06 | 416.30 |
246,581.30 | 0.25 | 7078.37 | 6988.82 | 282.47 | 321.28 | 413.38 |
246,442.42 | 0.33 | 7019.05 | 6998.63 | 285.28 | 358.75 | 451.36 |
246,478.01 | 0.41 | 7289.26 | 6776.67 | 277.52 | 320.95 | 412.26 |
246,430.34 | 0.50 | 7211.96 | 6910.40 | 259.99 | 287.43 | 383.68 |
246,567.71 | 0.58 | 7043.81 | 6976.15 | 285.03 | 360.62 | 451.93 |
246,628.16 | 0.66 | 7081.39 | 6980.49 | 285.06 | 320.72 | 412.03 |
247,441.35 | 0.75 | 7077.57 | 6962.50 | 272.36 | 358.98 | 453.27 |
246,053.09 | 0.83 | 7106.13 | 6897.19 | 407.91 | 288.51 | 484.45 |
245,923.26 | 0.00 | 7439.57 | 6920.27 | 190.04 | 148.50 | 250.00 |
246,465.56 | 0.08 | 7418.45 | 6996.79 | 147.49 | 167.41 | 250.00 |
251,894.05 | 0.17 | 7914.88 | 6783.71 | 216.04 | 148.32 | 250.00 |
246,728.76 | 0.25 | 7666.45 | 6787.41 | 146.94 | 136.34 | 250.00 |
252,626.39 | 0.33 | 7967.34 | 6757.19 | 234.33 | 148.11 | 250.00 |
252,905.03 | 0.41 | 7833.00 | 6903.46 | 233.59 | 149.44 | 250.00 |
253,483.46 | 0.50 | 7908.59 | 6913.56 | 183.01 | 148.23 | 250.00 |
253,067.24 | 0.58 | 7814.27 | 6937.50 | 238.69 | 146.58 | 250.00 |
252,267.08 | 0.66 | 7883.38 | 6816.07 | 236.42 | 148.90 | 250.00 |
251,956.35 | 0.75 | 7859.70 | 6829.00 | 222.75 | 148.22 | 250.00 |
250,013.70 | 0.83 | 7777.59 | 6846.36 | 182.19 | 136.40 | 250.00 |
258,900.83 | 0.00 | 7114.27 | 6936.08 | 259.63 | 359.76 | 1000.00 |
260,337.32 | 0.08 | 7131.80 | 6910.16 | 415.08 | 320.52 | 1000.00 |
258,034.73 | 0.17 | 7035.89 | 6998.24 | 258.89 | 321.44 | 1000.00 |
261,161.14 | 0.25 | 6994.50 | 6952.17 | 437.38 | 464.99 | 1000.00 |
259,591.17 | 0.33 | 7127.35 | 6667.72 | 408.10 | 536.26 | 1000.00 |
258,636.64 | 0.41 | 6964.81 | 6893.48 | 408.40 | 408.47 | 1000.00 |
262,062.78 | 0.50 | 7200.79 | 6929.12 | 294.63 | 463.96 | 1000.00 |
258,173.78 | 0.58 | 7044.86 | 6867.22 | 407.65 | 321.39 | 1000.00 |
258,616.69 | 0.66 | 7086.48 | 6940.15 | 268.20 | 358.64 | 1000.00 |
258,631.79 | 0.75 | 7175.13 | 6798.15 | 405.30 | 288.03 | 1000.00 |
258,636.73 | 0.83 | 7001.62 | 6904.83 | 407.21 | 360.19 | 1000.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoudian, A.; Lu, J. Two-Stage Multi-Objective Optimal Planning of Hybrid AC/DC Microgrid by Using ϵ-Constraint Method. Energies 2025, 18, 1905. https://doi.org/10.3390/en18081905
Mahmoudian A, Lu J. Two-Stage Multi-Objective Optimal Planning of Hybrid AC/DC Microgrid by Using ϵ-Constraint Method. Energies. 2025; 18(8):1905. https://doi.org/10.3390/en18081905
Chicago/Turabian StyleMahmoudian, Ali, and Junwei Lu. 2025. "Two-Stage Multi-Objective Optimal Planning of Hybrid AC/DC Microgrid by Using ϵ-Constraint Method" Energies 18, no. 8: 1905. https://doi.org/10.3390/en18081905
APA StyleMahmoudian, A., & Lu, J. (2025). Two-Stage Multi-Objective Optimal Planning of Hybrid AC/DC Microgrid by Using ϵ-Constraint Method. Energies, 18(8), 1905. https://doi.org/10.3390/en18081905