Enhanced Harmonic Reduction and Voltage Utilization Ratio Improvement in ANPC Inverters Using an Advanced Hybrid SVPWM Technique
Abstract
:1. Introduction
2. Analysis of Various PWM Techniques in Inverters and Application Strategies for the Advanced Hybrid SVPWM Technique
2.1. Analysis of the SPWM Technique
2.2. Analysis of the SVPWM Technique
2.3. Analysis of the RPS-B PWM Technique [21]
2.4. Operation and Control Method of the Proposed Advanced Hybrid SVPWM Technique
3. Simulation Performance Verification of the Proposed Advanced Hybrid SVPWM Technique
4. Verification of Performance and Analysis of Results Through Demonstration Experiments
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Henderson, R.D.; Rose, P.J. Harmonics: The effects on power quality and transformers. IEEE Trans. Ind. Appl. 1994, 30, 528–532. [Google Scholar] [CrossRef]
- Wagner, V.E.; Balda, J.C.; Griffith, D.C.; Mceachern, A.; Barnes, T.M.; Hartmann, D.P.; Phileggi, D.J.; Emannuel, A.E.; Horton, W.F.; Reid, W.E. Effects of harmonics on equipment. IEEE Trans. Power Deliv. 1993, 8, 672–680. [Google Scholar] [CrossRef]
- Wang, M.Z.; Sun, D.; Zheng, Z.H.; Nian, H. A Novel Lookup Table Based Direct Torque Control for OW-PMSM Drives. IEEE Trans. Ind. Electron. 2021, 68, 10316–10320. [Google Scholar] [CrossRef]
- Manzolini, V.; Rù, D.D.; Bolognani, S. An Effective Flux Weakening Control of a SyRM Drive Including MTPV Operation. IEEE Trans. Ind. Appl. 2019, 55, 2700–2709. [Google Scholar] [CrossRef]
- Kim, S.-H.; Sul, S.-K. Maximum Torque Control of an Induction Machine in the Field Weakening Region. IEEE Trans. Ind. Appl. 1995, 31, 787–794. [Google Scholar] [CrossRef]
- Siddique, M.D.; Reddy, B.P.; Iqbal, A.; Sarwar, A.; Memon, M.A.; Dahri, K.; Mekhilef, S. A new design of active NPC converter topology with higher voltage gain for solar PV applications. Sustain. Energy Technol. Assess. 2022, 54, 102850. [Google Scholar] [CrossRef]
- Ye, M.T.; Shi, T.N.; Wang, H.M.; Li, X.M.; Xia, C.L. Sensorless-MTPA Control of Permanent Magnet Synchronous Motor Based on an Adaptive Sliding Mode Observer. Energies 2019, 12, 3773. [Google Scholar] [CrossRef]
- Lee, D.Y.; Lee, J.H. Compensation of Interpolation Error for Look-Up Table-Based PMSM Control Method in Maximum Power Control. Energies 2021, 14, 5526. [Google Scholar] [CrossRef]
- Xu, X.; Novotny, D.W. Selecting the flux reference for induction machine drives in the field weakening region. IEEE Trans. Ind. Appl. 1992, 28, 1353–1358. [Google Scholar] [CrossRef]
- Sustainable Development Solutions Network. America’s Zero Carbon Action Plan; Sustainable Development Solutions Network: New York, NY, USA, 2020; p. 27. [Google Scholar]
- The Government of the Republic of Korea. 2050 Carbon Neutral Strategy of the Republic of Korea Towards a Sustainable and Green Society; The Government of the Republic of Korea: Seoul, Republic of Korea, 2020; pp. 16–17.
- Sharifzadeh, M.; Babaie, M.; Chouinard, G.; Al-Haddad, K.; Portillo, R.; Franquelo, L.G.; Gopakumar, K. Hybrid SHM-PWM for Common-Mode Voltage Reduction in Three-Phase Three-Level NPC Inverter. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 4826–4838. [Google Scholar] [CrossRef]
- Ahmad, S.; Iqbal, A.; Ashraf, I.; Meraj, M. Improved power quality operation of symmetrical and asymmetrical multilevel inverter using invasive weed optimization technique. Energy Rep. 2022, 8, 3323–3336. [Google Scholar] [CrossRef]
- Bin, X.; Ke, D.; Liang, X.L.; Yong, K. Flexible compensate arithmetic of the three-phase four-wire Active Power Filter. In Proceedings of the 2008 IEEE Vehicle Power and Propulsion Conference, Harbin, China, 3–5 September 2008; pp. 1–4. [Google Scholar]
- Masachs, M.L.; Heredero-Peris, D.; Montesinos-Miracle, D.; Rull-Duran, J. Understanding the three and four-leg inverter Space Vector. In Proceedings of the 2016 18th European Conference on Power Electronics and Applications, EPE 2016 ECCE Europe, Karlsruhe, Germany, 5–9 September 2016. [Google Scholar]
- Qin, L.; Hu, M.; Lu, D.D.-C.; Feng, Z.; Wang, Y.; Kan, J. Buck-boost dual-leg-integrated step-up inverter with low THD and single variable control for single-phase high-frequency AC microgrids. IEEE Trans. Power Electron. 2018, 33, 6278–6291. [Google Scholar] [CrossRef]
- Chamarthi, P.; Chhetri, P.; Agarwal, V. Simplified Implementation Scheme for Space Vector Pulse Width Modulation of n-Level Inverter with Online Computation of Optimal Switching Pulse Durations. IEEE Trans. Ind. Electron. 2016, 63, 6695–6704. [Google Scholar] [CrossRef]
- Banerjee, T.; Bera, J.N.; Chowdhuri, S.; Sarkar, G. A comparative study between different modulations techniques used in field oriented control induction motor drive. In Proceedings of the 2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC), Kolkata, India, 28–30 January 2016; pp. 358–362. [Google Scholar]
- Schäfer, M.; Goetze, W.; Hofmann, M.; Montesinos-Miracle, D.; Ackva, A. Three phase transformation for simplified space vector control of multilevel inverters. In Proceedings of the 2015 IEEE 16th Workshop on Control and Modeling for Power Electronics (COMPEL), Vancouver, BC, Canada, 12–15 July 2015; pp. 1–7. [Google Scholar]
- Al-Turki, Y.A.; Al-Howiti, A.H.R. Comparative Analysis of SPWM and SVPWM Control for Inverters. IEEE Trans. Power Electron. 2022, 37, 1595–1606. [Google Scholar]
- Haq, S.; Biswas, S.P.; Jahan, S.; Islam, M.R.; Rahman, M.A.; Mahmud, M.P.; Kouzani, A.Z. An Advanced PWM Technique for MMC Inverter Based Grid-Connected Photovoltaic Systems. IEEE Trans. Appl. Supercond. 2021, 31, 0601605. [Google Scholar] [CrossRef]
Parameter | Unit | Value |
---|---|---|
DC-Link Voltage | (V) | 220 |
Inductance | (mH) | 28 |
Resistance | (Ω) | 30 |
DC-link capacitance | (μF) | 4700 |
PWM Method | THD (%) 2 [A] | THD (%) 3 [A] | (V) 2 [A] | (V) 3 [A] |
---|---|---|---|---|
SPWM | 5.40 | 4.83 | 50.80 | 73.60 |
SVPWM | 5.00 | 2.93 | 50.86 | 73.73 |
RPS-B PWM | 2.36 | 2.83 | 51.03 | 73.80 |
Improved Hybrid PWM | 2.20 | 1.76 | 52.57 | 75.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, G.; Lee, H.; Shon, J. Enhanced Harmonic Reduction and Voltage Utilization Ratio Improvement in ANPC Inverters Using an Advanced Hybrid SVPWM Technique. Energies 2025, 18, 1868. https://doi.org/10.3390/en18071868
Kim G, Lee H, Shon J. Enhanced Harmonic Reduction and Voltage Utilization Ratio Improvement in ANPC Inverters Using an Advanced Hybrid SVPWM Technique. Energies. 2025; 18(7):1868. https://doi.org/10.3390/en18071868
Chicago/Turabian StyleKim, Gipyo, Hyunjae Lee, and Jingeun Shon. 2025. "Enhanced Harmonic Reduction and Voltage Utilization Ratio Improvement in ANPC Inverters Using an Advanced Hybrid SVPWM Technique" Energies 18, no. 7: 1868. https://doi.org/10.3390/en18071868
APA StyleKim, G., Lee, H., & Shon, J. (2025). Enhanced Harmonic Reduction and Voltage Utilization Ratio Improvement in ANPC Inverters Using an Advanced Hybrid SVPWM Technique. Energies, 18(7), 1868. https://doi.org/10.3390/en18071868