Optimization of Straw Particle Size for Enhanced Biogas Production: A Comparative Study of Wheat and Rapeseed Straw
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Substrate Parameters | |||
---|---|---|---|
Substrate | pH | Dry Mass (%) | Organic Dry Matter (%) |
Rapeseed straw | 6.05 | 88.75 | 93.59 |
Wheat straw | 7.01 | 90.10 | 96.18 |
4. Conclusions
- 1.
- Wheat straw exhibited a greater fermentation potential than rapeseed straw, particularly in finer fractions. The higher cellulose content and more favorable C/N ratio in wheat straw facilitated more efficient biogas production.
- 2.
- The highest methane and biogas yield was obtained from wheat straw samples with the smallest particle size (<1 mm), confirming that mechanical pretreatment is crucial for improving the structural accessibility of lignocellulosic biomass.
- 3.
- Although rapeseed straw had a lower methane yield, it can still serve as a valuable substrate in biogas plants, especially when combined with other nitrogen-rich materials, which could improve the nutrient balance and optimize the fermentation process.
- 4.
- Mechanical treatments such as milling and extrusion can significantly enhance methane fermentation efficiency, aligning with previous studies on the use of grinding techniques and biodegradation process intensification.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kainthola, J.; Kalamdhad, A.S.; Goud, V.V. A Review on Enhanced Biogas Production from Anaerobic Digestion of Lignocellulosic Biomass by Different Enhancement Techniques. Process Biochem. 2019, 84, 81–90. [Google Scholar] [CrossRef]
- Sołowiej, P.; Pochwatka, P.; Wawrzyniak, A.; Łapiński, K.; Lewicki, A.; Dach, J. The Effect of Heat Removal during Thermophilic Phase on Energetic Aspects of Biowaste Composting Process. Energies 2021, 14, 1183. [Google Scholar] [CrossRef]
- Sitienei, R.; Qi, Z.; Grant, B.; Obi-Njoku, O.; Vanderzaag, A.; Boh, M.Y.; Clark, O.G.; Price, G.; Madramootoo, C.; Zhang, T.; et al. A New Framework for Simulating C Decomposition and Emissions from Land Applied Biosolids and Manures Using the Denitrification and Decomposition Model. Sci. Total Environ. 2025, 969, 178913. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Vivekanand, V. Biological Treatment of Lignocellulosic Biomass by Curvularia Lunata for Biogas Production. Bioresour. Technol. 2020, 306, 123151. [Google Scholar] [CrossRef]
- Jóźwiakowski, K.; Marzec, M.; Fiedurek, J.; Kamińska, A.; Gajewska, M.; Wojciechowska, E.; Wu, S.; Dach, J.; Marczuk, A.; Kowlaczyk-Juśko, A. Application of H2O2 to Optimize Ammonium Removal from Domestic Wastewater. Sep. Purif. Technol. 2017, 173, 357–363. [Google Scholar] [CrossRef]
- Momoh, O.L.Y.; Ouki, S. Development of a Novel Fractal-like Kinetic Model for Elucidating the Effect of Particle Size on the Mechanism of Hydrolysis and Biogas Yield from Ligno-Cellulosic Biomass. Renew. Energy 2018, 118, 71–83. [Google Scholar] [CrossRef]
- Naegele, H.-J.; Mönch-Tegeder, M.; Haag, N.L.; Oechsner, H. Effect of Substrate Pretreatment on Particle Size Distribution in a Full-Scale Research Biogas Plant. Bioresour. Technol. 2014, 172, 396–402. [Google Scholar] [CrossRef]
- Karimipour-Fard, P.; Chio, C.; Brunone, A.; Marway, H.; Thompson, M.; Abdehagh, N.; Qin, W.; Yang, T.C. Lignocellulosic Biomass Pretreatment: Industrial Oriented High-Solid Twin-Screw Extrusion Method to Improve Biogas Production from Forestry Biomass Resources. Bioresour. Technol. 2024, 393, 130000. [Google Scholar] [CrossRef]
- Witaszek, K.; Herkowiak, M.; Pilarska, A.A.; Czekała, W. Methods of Handling the Cup Plant (Silphium perfoliatum L.) for Energy Production. Energies 2022, 15, 1897. [Google Scholar] [CrossRef]
- Czekała, W.; Frankowski, J.; Sieracka, D.; Pochwatka, P.; Kowalczyk-Juśko, A.; Witaszek, K.; Dudnyk, A.; Zielińska, A.; Wisła-Świder, A.; Dach, J. The Energy Efficiency Analysis of Sorghum Waste Biomass Grown in a Temperate Climate. Energy 2025, 320, 135433. [Google Scholar] [CrossRef]
- Kozłowski, K.; Dach, J.; Lewicki, A.; Malińska, K.; do Carmo, I.E.P.; Czekała, W. Potential of Biogas Production from Animal Manure in Poland. Arch. Environ. Prot. 2023, 45, 99–108. [Google Scholar] [CrossRef]
- Thamizhakaran Stanley, J.; Thanarasu, A.; Senthil Kumar, P.; Periyasamy, K.; Raghunandhakumar, S.; Periyaraman, P.; Devaraj, K.; Dhanasekaran, A.; Subramanian, S. Potential Pre-Treatment of Lignocellulosic Biomass for the Enhancement of Biomethane Production through Anaerobic Digestion—A Review. Fuel 2022, 318, 123593. [Google Scholar] [CrossRef]
- Marks, S.; Dach, J.; Fernandez Morales, F.; Mazurkiewicz, J.; Pochwatka, P.; Gierz, Ł. New Trends in Substrates and Biogas Systems in Poland. J. Ecol. Eng. 2020, 21, 19–25. [Google Scholar] [CrossRef]
- DIN 38414-8; Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung; Schlamm und Sedimente (Gruppe S); Bestimmung des Faulverhaltens (S 8). Beuth Verlag GmbH: Berlin, Germany, 1985.
- VDI 4630; Vergärung Organischer Stoffe Substratcharakterisierung, Probenahme, Stoffdatenerhebung, Gärversuche. VDI Verein Deutscher Ingenieure: Düsseldorf, Germany, 2016.
- Pilarski, K.; Pilarska, A.A.; Boniecki, P.; Niedbała, G.; Witaszek, K.; Piekutowska, M.; Idzior-Haufa, M.; Wawrzyniak, A. Degree of Biomass Conversion in the Integrated Production of Bioethanol and Biogas. Energies 2021, 14, 7763. [Google Scholar] [CrossRef]
- Kintl, A.; Huňady, I.; Sobotková, J.; Vítěz, T.; Brtnický, M.; Vejražka, K.; Elbl, J. Data on the Effect of Co-Fermentation of Maize and Leguminous Crops on Biogas Production, Methane Production and Methane Content in Biogas. Data Brief 2024, 56, 110842. [Google Scholar] [CrossRef]
- Czekała, W. Concept of In-Oil Project Based on Bioconversion of By-Products from Food Processing Industry. J. Ecol. Eng. 2017, 18, 180–185. [Google Scholar] [CrossRef]
- Mazurkiewicz, J. Loss of Energy and Economic Potential of a Biogas Plant Fed with Cow Manure Due to Storage Time. Energies 2023, 16, 6686. [Google Scholar] [CrossRef]
- Figueiredo, A.F.; Brede, M.; Heller, J.; Redzepovic, L.; Illi, L.; Weichgrebe, D. Anaerobic Digestion of Hemp and Flax Straw and Shives and Rapeseed Straw by the Ruminal Microbiota. Bioenergy Res. 2023, 17, 700–709. [Google Scholar] [CrossRef]
- Norgren, M.; Edlund, H. Processing of Wheat Straw Materials for Production of Medium Density Fiberboard (MDF). In Proceedings of the 59th Appita Annual Conference and Exhibition: Incorporating the 13th ISWFPC (International Symposium on Wood, Fibre and Pulping Chemistry), Auckland, New Zealand, 16–19 May 2005. [Google Scholar]
- Franz Gouertoumbo, W.; Alhaj Hamoud, Y.; Guo, X.; Shaghaleh, H.; Ali Adam Hamad, A.; Elsadek, E. Wheat Straw Burial Enhances the Root Physiology, Productivity, and Water Utilization Efficiency of Rice under Alternative Wetting and Drying Irrigation. Sustainability 2022, 14, 16394. [Google Scholar] [CrossRef]
- Szwarc, D.; Głowacka, K. Increasing the Biogas Potential of Rapeseed Straw Using Pulsed Electric Field Pre-Treatment. Energies 2021, 14, 8307. [Google Scholar] [CrossRef]
- Kupryaniuk, K.; Oniszczuk, T.; Combrzyński, M.; Lisiecka, K.; Janczak, D. Influence of Modification of the Plasticizing System on the Extrusion-Cooking Process and Selected Physicochemical Properties of Rapeseed and Buckwheat Straws. Materials 2022, 15, 5039. [Google Scholar] [CrossRef] [PubMed]
- Kupryaniuk, K.; Oniszczuk, T.; Combrzyński, M.; Matwijczuk, A.; Pulka, J. Physical and Thermal Modification of Selected Lignocellulosic Raw Materials. Int. Agrophys. 2023, 37, 141–149. [Google Scholar] [CrossRef]
- Witaszek, K.; Pilarski, K.; Niedbała, G.; Pilarska, A.A.; Herkowiak, M. Energy Efficiency of Comminution and Extrusion of Maize Substrates Subjected to Methane Fermentation. Energies 2020, 13, 1887. [Google Scholar] [CrossRef]
- Ryckebosch, E.; Drouillon, M.; Vervaeren, H. Techniques for Transformation of Biogas to Biomethane. Biomass Bioenergy 2011, 35, 1633–1645. [Google Scholar] [CrossRef]
- Luo, G.; Zhang, Y.; Tang, A. Capacity Degradation and Aging Mechanisms Evolution of Lithium-Ion Batteries under Different Operation Conditions. Energies 2023, 16, 4232. [Google Scholar] [CrossRef]
- Cai, S.; Ma, Y.; Bao, Z.; Yang, Z.; Niu, X.; Meng, Q.; Qin, D.; Wang, Y.; Wan, J.; Guo, X. The Impacts of the C/N Ratio on Hydrogen Sulfide Emission and Microbial Community Characteristics during Chicken Manure Composting with Wheat Straw. Agriculture 2024, 14, 948. [Google Scholar] [CrossRef]
- Cui, S.; Hu, D.; Chen, Z.; Wang, Y.; Yan, J.; Zhuang, S.; Jiang, B.; Ge, H.; Wang, Z.; Zhang, P. A Novel Anaerobic Membrane Bioreactor with Magnetotactic Bacteria for Organic Sulfur Pesticide Wastewater Treatment: Improvement of Enzyme Activities, Refractory Pollutants Removal and Methane Yield. Chem. Eng. J. 2025, 509, 161397. [Google Scholar] [CrossRef]
- Zhong, Y.; Ragauskas, A.J.; Zheng, Y.; Meng, X.; Zhou, Y.; Lin, Y. A Review on the Pretreatment of Straw Biomass by Using Biogas Slurry. Process Saf. Environ. Prot. 2025, 195, 106843. [Google Scholar] [CrossRef]
- Karthikeyan, P.K.; Bandulasena, H.C.H.; Radu, T. A Comparative Analysis of Pre-Treatment Technologies for Enhanced Biogas Production from Anaerobic Digestion of Lignocellulosic Waste. Ind. Crop. Prod. 2024, 215, 118591. [Google Scholar] [CrossRef]
- Klimiuk, E.; Pokój, T.; Budzyński, W.; Dubis, B. Theoretical and Observed Biogas Production from Plant Biomass of Different Fibre Contents. Bioresour. Technol. 2010, 101, 9527–9535. [Google Scholar] [CrossRef]
- Weiland, K.; Alge, K.; Mautner, A.; Bauer, A.; Bismarck, A. Horse Manure as Resource for Biogas and Nanolignocellulosic Fibres. Bioresour. Technol. 2023, 372, 128688. [Google Scholar] [CrossRef] [PubMed]
- Naik, G.P.; Poonia, A.K.; Chaudhari, P.K. Pretreatment of Lignocellulosic Agricultural Waste for Delignification, Rapid Hydrolysis, and Enhanced Biogas Production: A Review. J. Indian Chem. Soc. 2021, 98, 100147. [Google Scholar] [CrossRef]
- Sathish, T.; Muthukumar, K.; Saravanan, R.; Giri, J. Optimized Thermal Pretreatment for Lignocellulosic Biomass of Pigeon Pea Stalks to Augment Quality and Quantity of Biogas Production. Int. J. Thermofluids 2024, 24, 100911. [Google Scholar] [CrossRef]
- Tamilselvan, R.; Immanuel Selwynraj, A. Enhancing Biogas Generation from Lignocellulosic Biomass through Biological Pretreatment: Exploring the Role of Ruminant Microbes and Anaerobic Fungi. Anaerobe 2024, 85, 102815. [Google Scholar] [CrossRef]
- Kovács, E.; Szűcs, C.; Farkas, A.; Szuhaj, M.; Maróti, G.; Bagi, Z.; Rákhely, G.; Kovács, K.L. Pretreatment of Lignocellulosic Biogas Substrates by Filamentous Fungi. J. Biotechnol. 2022, 360, 160–170. [Google Scholar] [CrossRef]
- Chevalier, A.; Evon, P.; Monlau, F.; Vandenbossche, V.; Sambusiti, C. Extrusion as a Pretreatment for Lignocellulosic Agricultural Byproducts to Improve Biogas Production: A Review. Bioresour. Technol. Rep. 2025, 29, 102063. [Google Scholar] [CrossRef]
- Michal, P.; Svehla, P.; Malik, M.; Kaplan, L.; Hanc, A.; Tlustos, P. Production of Biogas from the Industrial Hemp Variety, Tiborszállási. Environ. Technol. Innov. 2023, 31, 103185. [Google Scholar] [CrossRef]
- Gaballah, E.S.; Abomohra, A.E.-F.; Xu, C.; Elsayed, M.; Abdelkader, T.K.; Lin, J.; Yuan, Q. Enhancement of Biogas Production from Rape Straw Using Different Co-Pretreatment Techniques and Anaerobic Co-Digestion with Cattle Manure. Bioresour. Technol. 2020, 309, 123311. [Google Scholar] [CrossRef]
- Abbasi-Riyakhuni, M.; Hashemi, S.S.; Denayer, J.F.M.; Aghbashlo, M.; Tabatabaei, M.; Karimi, K. Integrated Biorefining of Rapeseed Straw for Ethanol, Biogas, and Mycoprotein Production. Fuel 2025, 382, 133751. [Google Scholar] [CrossRef]
Biogas Yield of the Substrate According to DIN 38414/S8 | ||||||||
---|---|---|---|---|---|---|---|---|
Fresh Mass | Dry Mass | Dry Organic Mass | Degree of Decomposition of Organic Matter | |||||
Sample | Methane Content | Cumulative Methane | Cumulative Biogas | Cumulative Methane | Cumulative Biogas | Cumulative Methane | Cumulative Biogas | |
(%) | (m3 Mg−1) | (m3 Mg−1) | (m3 Mg−1) | (m3 Mg−1) | (m3 Mg−1) | (m3 Mg−1) | (%) | |
Rapeseed straw MIX | 55.33 | 153.94 | 278.23 | 173.46 | 313.51 | 185.35 | 334.99 | 45.89 |
Standard deviation | 0.54 | 1.49 | 1.84 | 1.89 | 2.01 | 2.18 | 2.08 | 2.15 |
Rapeseed straw MIX milled | 55.73 | 167.82 | 301.12 | 189.10 | 339.30 | 202.06 | 362.56 | 49.46 |
Standard deviation | 0.46 | 1.79 | 1.18 | 1.56 | 1.28 | 1.35 | 1.29 | 2.49 |
Rapeseed straw >2.4 mm | 53.77 | 72.34 | 133.92 | 81.13 | 150.85 | 86.69 | 161.24 | 22.42 |
Standard deviation | 0.34 | 1.59 | 1.48 | 1.29 | 1.35 | 1.49 | 1.35 | 1.28 |
Rapeseed straw 1–2.4 mm | 53.83 | 96.88 | 179.98 | 109.17 | 202.8 | 116.65 | 216.7 | 30.12 |
Standard deviation | 0.67 | 1.89 | 1.28 | 2.08 | 0.19 | 2.37 | 2.29 | 2.48 |
Rapeseed straw <1 mm | 47.23 | 132.87 | 281.34 | 149.72 | 317.02 | 159.98 | 338.75 | 50.08 |
Standard deviation | 0.55 | 2.86 | 1.37 | 1.56 | 2.89 | 1.19 | 1.28 | 2.11 |
Wheat straw MIX | 54.25 | 234.25 | 431.83 | 259.99 | 479.29 | 270.32 | 498.32 | 68.98 |
Standard deviation | 0.49 | 2.48 | 2.43 | 1.18 | 1.43 | 2.79 | 2.59 | 2.36 |
Wheat straw MIX milled | 53.36 | 235.78 | 441.88 | 261.69 | 490.44 | 272.08 | 509.91 | 71.19 |
Standard deviation | 0.56 | 0.89 | 1.49 | 2.09 | 1.59 | 1.82 | 1.65 | 2.34 |
Wheat straw >2.4 mm | 54.7 | 174.01 | 318.13 | 193.13 | 353.09 | 200.8 | 367.11 | 50.6 |
Standard deviation | 0.55 | 1.57 | 2.35 | 2.92 | 1.76 | 1.18 | 2.34 | 2.61 |
Wheat straw 1–2.4 mm | 53.02 | 188.59 | 355.69 | 209.32 | 394.78 | 217.63 | 410.46 | 57.49 |
Standard deviation | 0.59 | 1.54 | 1.44 | 1.65 | 1.29 | 2.39 | 2.84 | 1.59 |
Wheat straw <1 mm | 51.33 | 206.65 | 402.61 | 229.37 | 446.36 | 238.47 | 464.09 | 66.13 |
Standard deviation | 0.68 | 2.28 | 1.61 | 1.28 | 2.34 | 2.81 | 2.48 | 1.19 |
Sample | C/N Average | Standard Deviation | Average Dry Weight | N (% d.m.) | C (% d.m.) |
---|---|---|---|---|---|
Rapeseed straw MIX | 153.82 | 1.15 | 95.43 | 0.31 | 48.00 |
Rapeseed straw >2.4 mm | 85.26 | 1.08 | 95.43 | 0.47 | 40.44 |
Rapeseed straw 1–2.4 mm | 67.55 | 0.98 | 95.43 | 0.59 | 39.81 |
Rapeseed straw <1 mm | 42.26 | 1.34 | 95.43 | 0.90 | 37.98 |
Wheat straw MIX | 69.38 | 0.86 | 96.11 | 0.66 | 45.63 |
Wheat straw >2.4 mm | 138.11 | 1.59 | 96.11 | 0.30 | 41.07 |
Wheat straw 1–2.4 mm | 129.91 | 0.93 | 96.11 | 0.31 | 40.58 |
Wheat straw <1 mm | 114.65 | 1.11 | 96.11 | 0.35 | 40.64 |
Rapeseed Straw MIX | Rapeseed Straw >2.4 mm | Rapeseed Straw 1–2.4 mm | Rapeseed Straw <1 mm | Wheat Straw MIX | Wheat Straw >2.4 mm | Wheat Straw 1–2.4 mm | Wheat Straw <1 mm | |
---|---|---|---|---|---|---|---|---|
Ag | 4 | 5 | 4 | 4 | 4 | 4 | 4 | 5 |
Al | <79 | <95 | <97 | <126 | <109 | <84 | <95 | <111 |
As | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 |
Au | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 |
Ba | <13 | <14 | <14 | <16 | <14 | <11 | <14 | <14 |
Bi | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 |
Ca | 4917 | 9677 | 12,886 | 25,983 | 19,904 | 3377 | 4667 | 6523 |
Cd | 11 | 12 | 11 | 11 | 11 | 12 | 11 | 12 |
Cl | 3785 | 13,825 | 13,277 | 16,654 | 14,436 | 4480 | 4399 | 4476 |
Co | <5 | <4 | <5 | <8 | <5 | <5 | <5 | <8 |
Cr | <4 | <4 | <4 | <4 | <4 | <4 | <4 | <5 |
Cu | 4 | <2 | <2 | <3 | <2 | <2 | <2 | <2 |
Fe | 190 | 21 | 92 | 778 | 76 | 125 | 135 | 858 |
Hg | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 |
K | 16,358 | 29,193 | 28,909 | 46,923 | 37,128 | 16,793 | 18,489 | 20,703 |
Mg | <529 | <671 | <679 | <882 | <761 | <574 | <615 | <638 |
Mn | <11 | <11 | <12 | <14 | <12 | <11 | <11 | <12 |
Mo | 6 | 5 | 5 | 5 | 4 | 6 | 6 | 6 |
Nb | 6 | 7 | 6 | 6 | 6 | 7 | 6 | 7 |
Ni | <3 | <3 | <3 | <3 | <3 | <3 | <3 | <3 |
P | 637 | 421 | 839 | 905 | 672 | 835 | 813 | 988 |
Pb | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 |
Pd | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Rb | 1 | 9 | 9 | 11 | 10 | 1 | 1 | 1 |
S | 1052 | 9238 | 9383 | 16,733 | 15,175 | 1340 | 1186 | 1360 |
Sb | 9 | 9 | 9 | 11 | 8 | 7 | 9 | 8 |
Si | 22,197 | 84 | 107 | 505 | 137 | 9189 | 22,664 | 24,758 |
Sn | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 |
Sr | 12 | 16 | 21 | 38 | 27 | 9 | 10 | 13 |
Th | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Ti | 31 | 35 | 36 | 32 | 30 | 54 | 56 | 63 |
U | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 3 |
V | <3 | <3 | <3 | <3 | <3 | <3 | <3 | <3 |
Y | 5 | 4 | 4 | 4 | 4 | 6 | 6 | 6 |
Zn | 3 | 3 | 8 | 32 | 7 | 2 | <2 | 15 |
Zr | 6 | 5 | 5 | 4 | 4 | 6 | 6 | 6 |
Sample | ADF (%) | Average (%) | Standard Deviation | NDF (%) | Average (%) | Standard Deviation | Crude Fiber (%) | Average (%) | Standard Deviation |
---|---|---|---|---|---|---|---|---|---|
Rapeseed straw MIX | 58.09 | 58.73 | 0.741 | 76.03 | 75.91 | 0.199 | 47.6 | 47.61 | 0.161 |
59.54 | 75.68 | 47.7 | |||||||
58.55 | 76.02 | 47.4 | |||||||
Rapeseed straw >2.4 mm | 60.85 | 61.52 | 1.280 | 81.29 | 80.99 | 0.259 | 108.8 | 111.26 | 7.841 |
60.71 | 80.85 | 104.9 | |||||||
62.99 | 80.84 | 120.0 | |||||||
Rapeseed straw 1–2.4 mm | 58.85 | 58.85 | 0.681 | 76.40 | 76.16 | 0.318 | 116.4 | 109.83 | 6.649 |
59.56 | 76.28 | 103.1 | |||||||
60.22 | 75.80 | 110.0 | |||||||
Rapeseed straw <1 mm | 49.25 | 49.22 | 0.150 | 59.36 | 59.52 | 0.158 | 74.9 | 79.40 | 4.595 |
48.98 | 59.67 | 79.4 | |||||||
49.22 | 59.54 | 84.0 | |||||||
Wheat straw MIX | 50.43 | 50.63 | 0.170 | 86.36 | 87.09 | 0.648 | 40.8 | 40.59 | 0.170 |
50.74 | 87.29 | 40.6 | |||||||
50.71 | 87.61 | 40.4 | |||||||
Wheat straw >2.4 mm | 52.34 | 52.84 | 0.790 | 83.88 | 82.47 | 1.881 | 44.2 | 43.28 | 3.282 |
53.75 | 83.19 | 39.6 | |||||||
52.43 | 80.33 | 46.0 | |||||||
Wheat straw 1–2.4 mm | 49.98 | 49.98 | 0.157 | 80.33 | 78.52 | 1.574 | 38.9 | 41.32 | 6.390 |
50.02 | 77.43 | 48.6 | |||||||
49.73 | 77.81 | 36.5 | |||||||
Wheat straw <1 mm | 46.54 | 45.95 | 0.653 | 77.24 | 77.07 | 0.192 | 32.4 | 33.14 | 2.881 |
47.25 | 76.86 | 30.7 | |||||||
45.95 | 77.10 | 36.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Witaszek, K.; Kupryaniuk, K.; Kupryaniuk, J.; Panasiewicz, J.; Czekała, W. Optimization of Straw Particle Size for Enhanced Biogas Production: A Comparative Study of Wheat and Rapeseed Straw. Energies 2025, 18, 1794. https://doi.org/10.3390/en18071794
Witaszek K, Kupryaniuk K, Kupryaniuk J, Panasiewicz J, Czekała W. Optimization of Straw Particle Size for Enhanced Biogas Production: A Comparative Study of Wheat and Rapeseed Straw. Energies. 2025; 18(7):1794. https://doi.org/10.3390/en18071794
Chicago/Turabian StyleWitaszek, Kamil, Karol Kupryaniuk, Jakub Kupryaniuk, Julia Panasiewicz, and Wojciech Czekała. 2025. "Optimization of Straw Particle Size for Enhanced Biogas Production: A Comparative Study of Wheat and Rapeseed Straw" Energies 18, no. 7: 1794. https://doi.org/10.3390/en18071794
APA StyleWitaszek, K., Kupryaniuk, K., Kupryaniuk, J., Panasiewicz, J., & Czekała, W. (2025). Optimization of Straw Particle Size for Enhanced Biogas Production: A Comparative Study of Wheat and Rapeseed Straw. Energies, 18(7), 1794. https://doi.org/10.3390/en18071794