The Integration of Hydrogen Energy Storage (HES) in Germany: What Are the Benefits for Power Grids?
Abstract
:1. Introduction
2. Hydrogen Energy Storage in the Future Power Grid
3. Project Examples: The Grid Integration of Hydrogen Production Plants
3.1. Hycavmobil: Hydrogen Production and Storage in Brandenburg
- Scenario 1 (Scen1) is based on the current status of the power grid when the open_eGo dataset was created. The installed capacities of the power plant park in Germany were taken from the registry of power plants [34].
- Scenario 2 (Scen2) is based on the grid development plan NEP2035. The scenario includes an increased share of RE generation capacity and natural gas as well as reduced outputs from conventional generators.
- Scenario 3 (Scen3) is based on the study “e-Highway 2050 Modular Development Plan of the Pan-European Transmission System 2050”. This scenario describes a future electric power system that is 100% supplied with renewable energies in Germany and includes limited gas power plant capacities.
3.2. H2-Renowe—The Hydrogen-CAES Power Plant in North-West Lower Saxony
4. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiong, Y.; Chen, L.; Zheng, T.; Si, Y.; Mei, S. Electricity-Heat-Hydrogen Modeling of Hydrogen Storage System Considering Off-Design Characteristics. IEEE Access 2021, 9, 156768–156777. [Google Scholar] [CrossRef]
- Wen, T.; Zhang, Z.; Lin, X.; Li, Z.; Chen, C.; Wang, Z. Research on Modeling and the Operation Strategy of a Hydrogen-Battery Hybrid Energy Storage System for Flexible Wind Farm Grid-Connection. IEEE Access 2020, 8, 79347–79356. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, N.; Guan, D.; Ye, P.; Song, K.; Pan, X.; Wang, H.; Cheng, M. Optimal Design and Operation of Regional Multi-Energy Systems With High Renewable Penetration Considering Reliability Constraints. IEEE Access 2020, 8, 205307–205315. [Google Scholar] [CrossRef]
- Yin, W.; Liu, L.; Rui, X. Analysis, Modeling and Control of a Hybrid Drive Wind Turbine With Hydrogen Energy Storage System. IEEE Access 2020, 8, 114795–114806. [Google Scholar] [CrossRef]
- Sun, W.; Harrison, G.P. Active Load Management of Hydrogen Refuelling Stations for Increasing the Grid Integration of Renewable Generation. IEEE Access 2021, 9, 101681–101694. [Google Scholar] [CrossRef]
- Steward, D.; Saur, G.; Penev, M.; Ramsden, T. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage; Tech. Report NREL/TP-560-46719; NREL: Golden, CO, USA, 2009. [Google Scholar]
- Takach, M.; Sarajlić, M.; Peters, D.; Kröner, M.; Schuldt, F.; von Maydell, K. Review of Hydrogen Production Techniques from Water Using Renewable Energy Sources and Its Storage in Salt Caverns. Energies 2022, 15, 1415. [Google Scholar] [CrossRef]
- Bartels, J.; Varela, C.; Wassermann, T.; Medjroubi, W.; Zondervan, E. Integration of water electrolysis facilities in power grids: A case study in northern Germany. Energy Convers. Manag. X 2022, 14, 100209. [Google Scholar] [CrossRef]
- Hernández, B.; Alkayas, A.; Azar, E.; Mayyas, A.T. Mathematical Model for the Placement of Hydrogen Refueling Stations to Support Future Fuel Cell Trucks. IEEE Access 2021, 9, 148118–148131. [Google Scholar] [CrossRef]
- Elkhatib, R.; Kaoutari, T.; Louahlia, H. Green Hydrogen Energy Source for a Residential Fuel Cell Micro-Combined Heat and Power. Appl. Therm. Eng. 2024, 248, 123194. [Google Scholar] [CrossRef]
- Pandey, A. Namibia Pitches Green Hydrogen to Europe at Davos. 2022. Available online: https://www.dw.com/en/namibia-pitches-green-hydrogen-to-europe-at-davos/a-61936601 (accessed on 8 February 2023).
- Cebulla, F.; Haas, J.; Eichman, J.; Nowak, W.; Mancarella, P. How much electrical energy storage do we need? A synthesis for the U.S., Europe, and Germany. J. Clean. Prod. 2018, 181, 449–459. [Google Scholar] [CrossRef]
- Wietschel, M.; Hebling, C.; Ragwitz, M. Metastudie Wasserstoff—Auswertung von Energiesystemstudien; Tech. Report Studie im Auftrag des Nationalen Wasserstoffrats; Fraunhofer: Frankfurt am Main, Germany, 2021. [Google Scholar]
- Szenariorahmen zum Netzentwicklungsplan Strom 2037 mit Ausblick 2045; Tech. Report; 50Hertz Transmission GmbH: Berlin, Germany; Amprion GmbH: Dortmund, Germany; TenneT TSO GmbH: Bayreuth, Germany; TransnetBW GmbH: Wendlingen, Germany, 2022.
- Langfristszenarien für die Transformation des Energiesystems in Deutschland; Tech. Report; Fraunhofer ISI: Karlsruhe, Germany; Consentec: Aachen, Germany; Institut für Energie- and Umweltforschung: Heidelberg, Germany; TU Berlin: Berlin, Germany, 2022.
- Stolten, D.; Markewitz, P.; Schöb, T.; Kullmann, F.; Risch, S.; Groß, T.; Hoffmann, M.; Franzmann, D.; Triesch, T.; Kraus, S.; et al. Neue Ziele Auf Alten Wegen? Strategien Für Eine Treibhausgasneutrale Energieversorgung Bis Zum Jahr 2045; Tech. Report; IEK-3 Institute of Energy and Climate Research: Jülich, Germany, 2021. [Google Scholar]
- Fette, M.; Brandstätt, C.; Gil, H.-C.; Fardian, H.; Pregger, T.; Schaffart, J.; Tali, E.; Brücken, N. Multi-Sektor-Kopplung: Modellbasierte Analyse der Integration Erneuerbarer Stromerzeugung Durch Die Kopplung der Stromversorgung Mit Dem Wärme-, Gas- und Verkehrssektor; Tech. Report; Fraunhofer IFAM, DLR TT, Brennstoff- und Gerätetechnik, Gas- und Wäreme-Institut Essen: Bremen, Germany, 2020. [Google Scholar]
- Cerniauskas, S.; Markewitz, P.; Linßen, J.; Kullmann, G.; Lopion, P.-M.; Heuser, P.-M.; Grube, T.; Robinius, M.; Stolten, D. Wissenschaftliche Begleitstudie der Wasserstoff Roadmap Nordrhein-Westfalen; Forschungszentrum Jülich: Jülich, Germany, 2021. [Google Scholar]
- Gierkink, M. Vergleich der “Big 5”-Klimaneutralitätsszenarien; Tech. Report Kopernikus Projekt Ariadne; EWI Institute of Energy Economics at the University of Cologne: Cologne, Germany, 2022. [Google Scholar]
- Bericht zum Zustand und Ausbau der Verteilernetze; Tech. Report; Bundesnetzagentur: Bonn, Germany, 2021.
- Zahlen zu Netzengpassmanagementmaßnahmen—Erstes Quartal 2022; Tech. Report; Bundesnetzagentur: Bonn, Germany, 2022.
- Monitoring Report 2022, Bundesnetzagentur, Bundeskartellamt, Germany, Tech. Report. 2023. Available online: https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/Monitoringberichte/start.html (accessed on 12 February 2025).
- Quo Vadis, Elektrolyse? Identifikation Gesamtenergiesystemdienlicher Power-to-Gas-Standorte in der Potentialregion Nord-Westliches Niedersachsen und Schleswig-Holstein; Tech. Report; Gasunie Deutschland Transport Servies GmbH: Hannover, Germany; TenneT TSO GmbH: Bayreuth, Germany; Thyssengas GmbH: Dortmund, Germany, 2022.
- Amber Grid; Bulgartransgaz; Conexus; CREOS; DESFA; Elering, Enagás; Energinet; Eustream; FGSZ; FluxSwiss; et al. European Hydrogen Backbone: A European Hydrogen Infrastructure Vision Covering 28 Countries; Tech. Report; Guidehouse: Utrecht, The Netherlands, 2022. [Google Scholar]
- Netzentwicklungsplan 2035; Tech. Report; 50Hertz Transmission GmbH: Berlin, Germany; Amprion GmbH: Dortmund, Germany; TenneT TSO GmbH: Bayreuth, Germany; TransnetBW GmbH: Wendlingen, Germany, 2021.
- Cozzolino, R.; Bella, G. A review of electrolyzer-based systems providing grid ancillary services: Current status, market, challenges and future directions. Front. Energy Res. 2024, 12, 1358333. [Google Scholar] [CrossRef]
- Stark, M.; Widdel, F. Kritische Einordnung des Szenariorahmenentwurfs—Die Richtigen Weichenstellungen für das Gelingen der Energiewende Setzen; Tech. Report; Bundesverband Erneuerbare Energien: Berlin, Germany, 2022. [Google Scholar]
- Golling, C.; Jarolin, M. Regionale Entwicklung des Strom- und Wasserstoffbedarfs: Ergebnispräsentation für die 50Hertz Regelzone; Tech. Report; 50Hertz Transmission GmbH: Berlin, Germany, 2022. [Google Scholar]
- TransnetBW. Charging of Levy Under German Renewable Energy Act (EEG) from 1 July 2022. Available online: https://www.transnetbw.de/en/energy-market/renewables-and-levies/eeg-support/charging-of-levy-under-german-renewable-energy-act-eeg-from-1-july-2022 (accessed on 12 March 2025).
- CEER Paper on Electricity Distribution Tariffs Supporting the Energy Transition; Distribution Systems Working Group, Ref: C19-DS-55-04; CEER: Brussels, Belgium, 2020; Available online: https://www.ceer.eu/wp-content/uploads/2024/04/C19-DS-55-04_CEER-paper-electricity-distribution-tariffs.pdf (accessed on 12 February 2025).
- Neuhoff, K.; Richstein, J.; Schwenen, S.; Vasa, A.; May, N. Carbon Contracts for Difference: Expanding Clean Hydrogen Production; DIW Discussion Papers; DIW: Berlin, Germany, 2021. [Google Scholar]
- Hoidis, J.; Kroener, M.; Agert, C. Salzkavernen Speichern Wasserstoff für Mobilitätsswende. Available online: https://www.dlr.de/content/de/artikel/news/2020/04/20201217_salzkavernen_speichern_wasserstoff_fuer_mobilitaetswende.html (accessed on 4 October 2021).
- Peters, D. Innovationslabor H2-ReNoWe Wasserstoffregion Nord-West-Niedersachsen. Available online: https://www.dlr.de/ve/desktopdefault.aspx/tabid-16121/26108_read-67233/ (accessed on 5 October 2021).
- open_eGo Project Website. Available online: https://openenergy-platform.org (accessed on 4 October 2021).
- DIgSILENT PowerFactory Official Website. Available online: https://www.digsilent.de/en/powerfactory.html (accessed on 12 February 2025).
- Sarajlic, M.; Peters, D.; Beckmann, R.; Liere-Netheler, I.; Schuldt, F.; von Maydell, K. Application of Open Source Models and Data Sets for Energy System Research: (User) Experiences from Ongoing and Completed Projects. In Proceedings of the 2022 Open Source Modelling and Simulation of Energy Systems (OSMSES), Aachen, Germany, 4–5 April 2022; pp. 1–6. [Google Scholar] [CrossRef]
- QGIS Official Website. Available online: https://www.qgis.org/en/site/ (accessed on 12 February 2025).
- Fries, A.; Kaiser, F.; Beck, H.; Weber, R. Huntorf 2020—Improvement of Flexibility and Efficiency of a Compressed Air Energy Storage Pant based on Synthetic Hydrogen. In Proceedings of the Conference on Sustainable Energy Supply and Energy Storage Systems, NEIS 2018, Hamburg, Germany, 20–21 September 2018; pp. 1–5. [Google Scholar]
- Klaas, A.-K.; Beck, H.-P.; Hauer, I. Sizing of Hydrogen Energy Storage Concepts for Simultaneous Participation in Various Energy Markets. In Proceedings of the 2023 19th International Conference on the European Energy Market (EEM), Lappeenranta, Finland, 6–8 June 2023; pp. 1–8. [Google Scholar] [CrossRef]
- Liere-Netheler, I.; Schuldt, F.; von Maydell, K.; Agert, C. Optimised curtailment of distributed generators for the provision of congestion management services considering discrete controllability. IET Gener. Transm. Distrib. 2020, 14, 735–744. [Google Scholar] [CrossRef]
- Bundesnetzagentur. SMARD Strommarktdaten. Available online: www.smard.de (accessed on 22 November 2022).
- Bundesnetzagentur. Marktstammdatenregister. Available online: www.marktstammdatenregister.de/MaStR (accessed on 22 November 2022).
- Klaas, A.-K. Speicherauslegung und Betriebsführung von Wasserstoff-Druckluftspeicherkraftwerken (HCAES) bei Simultaner Teilnahme an Verschiedenen Energiemärkten; Cuvillier Verlag: Göttingen, Germany, 2022; Available online: https://cuvillier.de/de/shop/publications/8915 (accessed on 21 March 2025).
- Medjroubi, W.; Müller, U.P.; Scharf, M.; Matke, C.; Kleinhans, D. Open Data in Power Grid Modelling: New Approaches Towards Transparent Grid Models. Energy Rep. 2017, 3, 14–21. [Google Scholar] [CrossRef]
Study | Electrolysis Sites | Storage Capacity H2 in TWh | Storage Capacity (Others) in GWh | Reconversion H2/CH4 in GW |
---|---|---|---|---|
NEP scenario framework [14]: | According to H2 demand: | No data | Battery home and large storage | |
Onsite electrolysers 2037 | SH 1, ST 1, NDS 1, NRW 1, RP 1, fewer BY 1, BW 1 | 150–194 | 40 | |
Onsite electrolysers 2045 | Increase in NRW 1, NDS 1 | 246–310 | 29 | |
New goals on old paths? [16] KSG 2045 | Highest installed power in north-western NDS 1, northern NRW 1, SH 1, new federal states, less installed power in BY, BW1 | 35.4(–61) by converting previous natural gas caverns | 562 | ca. 90 |
MuSeKo THG95 2050 [17] | Main focus: HE 1/RP 1/SL 1, NDS 1, BB 1, BY 1, BW 1 | 53 | ca. 100 | ca. 50 |
Hydrogen Roadmap NRW 1 [18] 2050 | Highest installed power in NDS 1/SH 1, then MV 1 and NRW 1 (10%), less in Brandenburg | No data | No data | 52 (Germany) (24% NRW 1) |
Long-term scenarios BMWK [15]: | ||||
TN-Strom 2030 | Coastal only | 2 | Mainly heat storage, load flexibility Battery storage in Europe | 29.4 |
TN-Strom 2045 | NDS 1/SH 1 coast 56%, BB 1/MV 1 33%, south-NDS 1/Sachsen 11% | 74 | 67 | |
TN-H2 2045 | No data | 72 | 38 |
Study | Hydrogen Demand in TWh (Incl. Import) | Electricity Consumption in TWh (in Germany) | Rated Output Electrolysis in GWel | Full-Load Hours (FLH) | Operational Strategy |
---|---|---|---|---|---|
NEP scenario framework [14]: | |||||
Onsite electrolysers 2037 | 115–225 | 44 | 10 | 4500 | Local needs |
Offsite electrolysers 2037 | 13–21 | 6–10 | 2000 | High RE feed-in | |
Onsite electrolysers 2045 | 240–450 | 38 | 13 | 3000 | Market oriented |
Offsite electrolysers 2045 | 70–82 | 23–27 | 3000 | High RE feed-in | |
New goals on old paths? [16]: | |||||
(Interim year) 2030 | 29 | 36 | 15 | 2400 | No data |
KSG 2045 | 412 | 269 | 71 | 3800 | |
MuSeKo THG95 2050 [17] | No data | No data | 111 | No data | High RE feed-in Mainly PV (noon, summer) |
Hydrogen Roadmap [18] 2050 | 370 | 252 | 70 | 3600 | High RE feed-in Mainly Wind Onshore |
Long-term scenarios BMWK [15]: | |||||
TN-Strom 2030 | 27 | 39 | 11 | 3515 | High RE feed-in (in particular PV) |
TN-Strom 2045 | 363 | 265 | 74 | 3545 | |
TN-H2 2045 | 694 | 343 | 97 | 3536 |
Scenario | Scen1 | Scen2 | Scen3 |
---|---|---|---|
Number of generators | 1310 | 1656 | 1529 |
Rated power of installed generators [GW] | 22.15 | 25.47 | 21.78 |
Annual amount of produced energy [TWh] | 70.06 | 70.79 | 50.95 |
Number of loads | 230 | 230 | 230 |
Rated power of installed loads [GW] | 1.76 | 1.76 | 1.76 |
Annual amount of consumed energy [TWh] | 15.45 | 15.45 | 15.45 |
Technology | Installed Power [GW] | ||
---|---|---|---|
Scen1 | Scen2 | Scen3 | |
Gas | 2.67 | 4.97 | 0 |
Lignite | 7.00 | 3.26 | 0 |
Coal | 0.69 | 0.42 | 0 |
Other non-renewable | 1.41 | 0.48 | 0 |
Biomass | 0.61 | 0.85 | 2.34 |
Run-of-river | 0.02 | 0.02 | 0.02 |
PV | 3.13 | 4.07 | 6.51 |
Wind Onshore | 6.35 | 9.48 | 10.35 |
Wind Offshore | 0.29 | 1.92 | 2.58 |
The Installed Power of the H2-Facility [MW] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 * | 2 | 10 | 20 | 50 | 100 | 150 | 200 | |||
Maximum line loading [%] | 110 kV grid level | Scen1 | 19.09 | 19.08 | 19.04 | 18.99 | 18.85 | 24.84 | 35.85 | 46.23 |
Scen2 | 12.48 | 12.47 | 12.45 | 12.42 | 12.33 | 16.24 | 23.43 | 30.21 | ||
Scen3 | 9.45 | 9.45 | 9.42 | 9.39 | 9.31 | 15.38 | 22.2 | 28.62 | ||
220 kV grid level | Scen1 | 4.62 | 4.62 | 4.59 | 4.57 | 4.50 | 4.39 | 4.29 | 4.19 | |
Scen2 | 3.02 | 3.02 | 3.00 | 2.99 | 2.94 | 2.87 | 2.80 | 2.74 | ||
Scen3 | 2.83 | 2.83 | 2.83 | 2.83 | 2.83 | 2.83 | 2.84 | 2.84 | ||
380 kV grid level | Scen1 | 15.06 | 15.06 | 15.06 | 15.06 | 15.06 | 15.06 | 15.07 | 15.07 | |
Scen2 | 9.84 | 9.84 | 9.84 | 9.84 | 9.85 | 9.85 | 9.85 | 9.85 | ||
Scen3 | 10.12 | 10.12 | 10.12 | 10.12 | 10.13 | 10.14 | 10.15 | 10.16 |
Electrolysis | Turbine | Compressor | ||
---|---|---|---|---|
Revenue-optimized operation | 6978 | 43 | 169 | |
Revenue-optimized operation, H+ (high hydrogen price when selling) | 8479 | 29 | 113 | |
Wind feed-in | 1500 FLH | 1500 | 0 | 0 |
3000 FLH | 3000 | 0 | 0 | |
4500 FLH | 4500 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarajlić, M.; Peters, D.; Takach, M.; Schuldt, F.; Maydell, K.v. The Integration of Hydrogen Energy Storage (HES) in Germany: What Are the Benefits for Power Grids? Energies 2025, 18, 1720. https://doi.org/10.3390/en18071720
Sarajlić M, Peters D, Takach M, Schuldt F, Maydell Kv. The Integration of Hydrogen Energy Storage (HES) in Germany: What Are the Benefits for Power Grids? Energies. 2025; 18(7):1720. https://doi.org/10.3390/en18071720
Chicago/Turabian StyleSarajlić, Mirza, Dorothee Peters, Mahdi Takach, Frank Schuldt, and Karsten von Maydell. 2025. "The Integration of Hydrogen Energy Storage (HES) in Germany: What Are the Benefits for Power Grids?" Energies 18, no. 7: 1720. https://doi.org/10.3390/en18071720
APA StyleSarajlić, M., Peters, D., Takach, M., Schuldt, F., & Maydell, K. v. (2025). The Integration of Hydrogen Energy Storage (HES) in Germany: What Are the Benefits for Power Grids? Energies, 18(7), 1720. https://doi.org/10.3390/en18071720