A Review of the Evaluation, Simulation, and Control of the Air Conditioning System in a Nuclear Power Plant
Abstract
:1. Introduction
2. Materials and Methods
3. Discussion
4. Conclusions
Funding
Conflicts of Interest
References
- Gjorgiev, B.; Volkanovski, A.; Sansavini, G. Improving nuclear power plant safety through independent water storage systems. Nucl. Eng. Des. 2017, 323, 8–15. [Google Scholar] [CrossRef]
- Xiong, Z.; Wang, M.; Gu, H.; Ye, C. Experimental study on heat pipe heat removal capacity for passive cooling of spent fuel pool. Ann. Nucl. Energy 2015, 83, 258–263. [Google Scholar] [CrossRef]
- Ye, C.; Zheng, M.; Wang, M.; Zhang, R.; Xiong, Z. The design and simulation of a new spent fuel pool passive cooling system. Ann. Nucl. Energy 2013, 58, 124–131. [Google Scholar] [CrossRef]
- Surip, W.; Putra, N.; Antariksawan, A.R. Design of passive residual heat removal systems and application of two-phase thermosyphons: A review. Prog. Nucl. Energy 2022, 154, 104473. [Google Scholar] [CrossRef]
- Partmann, C.; Schuster, C.; Hurtado, A. Experimental investigation of the thermal hydraulics of a spent fuel pool under loss of active heat removal conditions. Nucl. Eng. Des. 2018, 330, 480–487. [Google Scholar] [CrossRef]
- Li, Z.; Chang, H.; Chen, L.; Han, K.; Fang, F. Simulation model for investigating safety margin of three-layer molten pool after late phase in-vessel water injection. Prog. Nucl. Energy 2022, 154, 104448. [Google Scholar] [CrossRef]
- Lu, X.; Fu, Y.; O’Neill, Z. Benchmarking high performance HVAC Rule-Based controls with advanced intelligent Controllers: A case study in a Multi-Zone system in Modelica. Energy Build. 2023, 284, 112854. [Google Scholar] [CrossRef]
- Techato, K.-A.; Watts, D.J.; Chaiprapat, S. Life cycle analysis of retrofitting with high energy efficiency air-conditioner and fluorescent lamp in existing buildings. Energy Policy 2009, 37, 318–325. [Google Scholar] [CrossRef]
- Chatzimouratidis, A.I.; Pilavachi, P.A. Objective and subjective evaluation of power plants and their non-radioactive emissions using the analytic hierarchy process. Energy Policy 2007, 35, 4027–4038. [Google Scholar] [CrossRef]
- Omidifard, P.; Pirouzmand, A.; Hadad, K.; Rezaee, J. Investigating the effect of spray system on the containment condition of VVER1000/V446 NPP during LBLOCA and TLOFW accidents. Nucl. Eng. Des. 2023, 413, 112562. [Google Scholar] [CrossRef]
- Song, Y.; Xing, X.; Lin, C.; Xiong, M.; Zhang, X.; Zhang, Z.; Wu, S.; Zhang, S.; Shi, Y.; Wu, Z.; et al. Advances in the investigation and risk assessment of cold source blockages in nuclear power plants in China. Nucl. Eng. Des. 2024, 420, 112998. [Google Scholar] [CrossRef]
- Zhang, J.; Xia, H.; Zhu, Y.; Fu, Y. Research on sensor fault tolerance technology in nuclear power plant control system. Ann. Nucl. Energy 2024, 207, 110714. [Google Scholar] [CrossRef]
- Ding, X.; Tian, W.; Chen, Q.; Wei, G. Policies on water resources assessment of coastal nuclear power plants in China. Energy Policy 2019, 128, 170–178. [Google Scholar] [CrossRef]
- Hou, Y.; Chen, T.; Li, W.; Gao, C.; Chen, B.; Zhang, C.; Xiang, Y. Numerical study on surface corrosion deposition of fuel elements and its influence on flow heat transfer. Ann. Nucl. Energy 2024, 201, 110458. [Google Scholar] [CrossRef]
- Xin, L.; Guo, B.; Han, Y.; Lu, Y.; Lyu, Y.; Shoji, T. Exploring heat treatment on the corrosion resistance of SA106B tubes in high temperature pressurized water with different flow velocities. Corros. Sci. 2024, 236, 112266. [Google Scholar] [CrossRef]
- Liu, Y.; He, H.; Zhang, T.; Liu, X. Pressurized water reactor fuel corrosion-related unidentified deposit and its related safety issues—I. Corrosion product deposition and heat transfer. Ann. Nucl. Energy 2024, 208, 110758. [Google Scholar] [CrossRef]
- Magalhães, I.R.; Chaves, L.V.; de Castro, V.F.; Reis, P.A.; Costa, A.L.; Veloso, M.A.F.; Pereira, C. Comparative analysis of different FeCrAl alloys in pressurized water reactors. Nucl. Eng. Des. 2024, 422, 113109. [Google Scholar] [CrossRef]
- Allahyari, S.A.; Charkhi, A.; Davarkhah, R.; Pejmanzad, P. Numerical modeling and experimental validation of heat transfer in a research nuclear reactor evaporator by considering the precipitate formation. Chem. Eng. Res. Des. 2024, 203, 243–252. [Google Scholar] [CrossRef]
- Liang, J.; Li, R.; Liu, Z. Virtual lattice method for efficient Monte Carlo transport simulation of dispersion nuclear fuels. Comput. Phys. Commun. 2024, 295, 108985. [Google Scholar] [CrossRef]
- Zhang, W.; Hao, W.; Ye, Z.; Xie, H.; Shi, L. Conceptual design and analysis of a combined passive cooling system for both reactor and spent fuel of the pool-vessel reactor system. Nucl. Eng. Des. 2023, 414, 112557. [Google Scholar] [CrossRef]
- Bian, H.; Sun, Z.; Ding, M.; Zhang, N. Local phenomena analysis of steam condensation in the presence of air. Prog. Nucl. Energy 2017, 101, 188–198. [Google Scholar] [CrossRef]
- Yang, S.; Chung, S.; Kim, H. Effect of pressure on effectiveness of quenching meshes in transmitting hydrogen combustion. Nucl. Eng. Des. 2003, 224, 199–206. [Google Scholar] [CrossRef]
- Yang, J.; Yuan, L.; Su, L.; Qin, Q.; Wang, R. Study on life cycle management system for chillers in nuclear power plant. J. Phys. Conf. Ser. 2018, 1074, 012153. [Google Scholar]
- Bajaj, S.; Gore, A. The Indian PHWR. Nucl. Eng. Des. 2006, 236, 701–722. [Google Scholar] [CrossRef]
- Ebihara, M.; Oura, Y.; Shirai, N.; Nagakawa, Y.; Sakurai, N.; Haba, H.; Matsuzaki, H.; Tsuruta, H.; Moriguchi, Y. A new approach for reconstructing the 131I-spreading due to the 2011 Fukushima nuclear accident by means of measuring 129I in airborne particulate matter. J. Environ. Radioact. 2019, 208–209, 106000. [Google Scholar] [CrossRef]
- Jäckel, B.S.; Steiner, P.; Klügel, J.-U. Loss-of-cooling accident calculations for the wet storage pool of NPP Gösgen/Däniken. Nucl. Eng. Des. 2020, 370, 110839. [Google Scholar] [CrossRef]
- Bousbia-Salah, A.; D’Auria, F. Use of coupled code technique for Best Estimate safety analysis of nuclear power plants. Prog. Nucl. Energy 2007, 49, 1–13. [Google Scholar] [CrossRef]
- Wu, Y.; Cheng, J.; Zhu, H.; Xue, H.; Lu, Q.; Li, Y.; Li, W.; Tao, H. Experimental study on heat transfer characteristics of separated heat pipe with compact structure for spent fuel pool. Ann. Nucl. Energy 2023, 181, 109580. [Google Scholar] [CrossRef]
- Unger, S.; Krepper, E.; Beyer, M.; Hampel, U. Numerical optimization of a finned tube bundle heat exchanger arrangement for passive spent fuel pool cooling to ambient air. Nucl. Eng. Des. 2020, 361, 110549. [Google Scholar] [CrossRef]
- Wang, X.; Xie, L.; Bao, H.; Tan, S.; Zhao, F.; Tian, Y.; Liao, H.; Tian, R. Analysis of flow heat transfer characteristics of helium-xenon gas mixtures during natural circulation. Nucl. Eng. Des. 2024, 427, 113423. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, Q.; Lu, C.; Huang, S.; Zhang, T.; Zhang, Z. Numerical simulation of typical abnormal operating conditions in the secondary circuit system of a Hua-long Pressurized Reactor nuclear power unit. Ann. Nucl. Energy 2024, 201, 110406. [Google Scholar] [CrossRef]
- Kutbay, F.; Lüle, S.Ş. The development of multi-physics approach with Monte Carlo and computational fluid dynamics coupling for reactor cores. Nucl. Eng. Des. 2023, 402, 112127. [Google Scholar] [CrossRef]
- Liu, Z.; Li, W.; Chen, Y.; Luo, Y.; Zhang, L. Review of energy conservation technologies for fresh air supply in zero energy buildings. Appl. Therm. Eng. 2019, 148, 544–556. [Google Scholar] [CrossRef]
- Wu, C.; Li, X.; Wu, J.; Yu, C.; Zou, C.; Cai, X.; Chen, J. Xenon behavior modeling for molten salt reactors by using multiple transport mechanisms. Prog. Nucl. Energy 2024, 168, 104987. [Google Scholar] [CrossRef]
- Bleynat, S.; Dulla, S.; Pancotti, F.; Ricci, L.; Vicini, C.; Zanino, R. Hybrid Monte Carlo/deterministic activation calculation to support the decommissioning of PWRs: Validation against data from the thermal shield of the Enrico Fermi NPP. Ann. Nucl. Energy 2023, 181, 109527. [Google Scholar] [CrossRef]
- Guo, K.; Zhang, Y.; Lin, X.; Huang, J.; Wang, C.; Qiu, S.; Tian, W.; Su, G. Transient thermoelectric characteristics of the principle prototype for the heat pipe cooled nuclear Silent themoelectirc reactor (NUSTER). Ann. Nucl. Energy 2023, 189, 109818. [Google Scholar] [CrossRef]
- Muñoz-Cobo, J.L.; Berna-Escriche, C.; Blanco, D. Bayesian calibration and fitting of nuclear thermal–hydraulic models by Markov chain Monte Carlo methods using the Gibbs sampler. Ann. Nucl. Energy 2024, 198, 110318. [Google Scholar] [CrossRef]
- Ognerubov, V.; Kaliatka, A.; Vileiniškis, V. Features of modelling of processes in spent fuel pools using various system codes. Ann. Nucl. Energy 2014, 72, 497–506. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Liu, Q.; Zhou, J. Numerical simulation on flow and reaction characteristics for catalytic region in helium-heated steam reformer coupled with HTR-10. Prog. Nucl. Energy 2022, 154, 104435. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Yuann, Y.-R. Accident mitigation for spent fuel storage in the upper pool of a Mark III containment. Ann. Nucl. Energy 2016, 91, 156–164. [Google Scholar] [CrossRef]
- Oh, C.; Lee, J.I. A methodology to quantify effects of constitutive equations on safety analysis using integral effect test data. Nucl. Eng. Technol. 2024, 56, 2999–3029. [Google Scholar] [CrossRef]
- Hasnain, M.; Sezer, H.; Mason, J.H. Modeling heat and mass transfer in metal hydride hydrogen storage systems: Impact of operating parameters and reactor geometry. Int. J. Hydrogen Energy 2024, 71, 1045–1055. [Google Scholar] [CrossRef]
- Qi, X.; Yu, F.; Meng, Z.; Sun, Z.; Zhang, N.; Guo, Z. Preliminary design of the suppressive containment system based on HPR1000. Nucl. Eng. Des. 2023, 415, 112743. [Google Scholar] [CrossRef]
- Xie, D.; Wang, C.; Ding, W.; Wang, H. Modelling dispersion of radioactive aerosols and occupational dose assessment of workers in a large nuclear plant industrial workshop with a stratified air conditioning system. Environ. Technol. Innov. 2020, 19, 100828. [Google Scholar] [CrossRef]
- Hedayat, A.; Davari, A. Feasibility study to increase the reactor power at natural convection mode in Tehran Research Reactor (TRR) through a hybrid thermal-hydraulic simulation and analysis using the RELAP5 code and Computational Fluid Dynamic (CFD) modeling by ANSYS-FLUENT. Prog. Nucl. Energy 2022, 150, 104285. [Google Scholar] [CrossRef]
- Golmoradi, D.; Jahanfarnia, G.; Shirani, A.; Safarzadeh, O.; Zarifi, E. Designing a molten core collection chamber for Bushehr-1 nuclear power plant using MELCOR 1.8.6 and ANSYS-FLUENT codes. Prog. Nucl. Energy 2023, 155, 104511. [Google Scholar] [CrossRef]
- Liu, T.; Kong, H.; Li, Y.; Wang, J.; Yu, H.; Li, Y. Research on the removal of charged colloidal filter materials from coolants in nuclear power plants. Nucl. Eng. Des. 2024, 420, 113011. [Google Scholar] [CrossRef]
- Vancouver, J.B.; Wang, M.; Weinhardt, J.M. (Eds.) Computational Modeling for Industrial-Organizational Psychologists; Routledge: New York, NY, USA, 2023. [Google Scholar]
- Xiong, Z.; Ye, C.; Wang, M.; Gu, H. Experimental study on the sub-atmospheric loop heat pipe passive cooling system for spent fuel pool. Prog. Nucl. Energy 2015, 79, 40–47. [Google Scholar] [CrossRef]
- Fu, W.; Li, X.; Wu, X.; Zhang, Z. Investigation of a long term passive cooling system using two-phase thermosyphon loops for the nuclear reactor spent fuel pool. Ann. Nucl. Energy 2015, 85, 346–356. [Google Scholar] [CrossRef]
- Choi, J.; Lim, C.; Kim, H. Fork-end heat pipe for passive air cooling of spent nuclear fuel pool. Nucl. Eng. Des. 2021, 374, 111081. [Google Scholar] [CrossRef]
- Kuang, Y.; Yang, Q.; Wang, W. Thermal analysis of a heat pipe assisted passive cooling system for spent fuel pools. Int. J. Refrig. 2022, 135, 174–188. [Google Scholar] [CrossRef]
- Oka, Y.; Jevremovic, T. Negative coolant void reactivity in large fast breeder reactors with hydrogenous moderator layer. Ann. Nucl. Energy 1996, 23, 1105–1115. [Google Scholar] [CrossRef]
- Huang, Z.; Ma, W. Performance of a passive cooling system for spent fuel pool using two-phase thermosiphon evaluated by RELAP5/MELCOR coupling analysis. Ann. Nucl. Energy 2019, 128, 330–340. [Google Scholar] [CrossRef]
- Chai, X.; Zhu, E.; Li, T.; Xiong, J.; Zhang, T.; Liu, X. A multi-scale and multi-physical coupling method for the transient characteristics of space nuclear reactor. Prog. Nucl. Energy 2024, 175, 105336. [Google Scholar] [CrossRef]
- Hui, J.; Ling, J.; Dong, H.; Wang, G.; Yuan, J. Distributed parameter modeling for the steam generator in the nuclear power plant. Ann. Nucl. Energy 2021, 152, 107945. [Google Scholar] [CrossRef]
- Hedayat, A.; Davilu, H.; Jafari, J. Loss of coolant accident analyses on Tehran research reactor by RELAP5/MOD3.2 code. Prog. Nucl. Energy 2007, 49, 511–528. [Google Scholar] [CrossRef]
- Wahid, A.; Sundari, T.; Ratiko, R. Dynamic modeling and controlling of a spent nuclear fuel storage pool under periodic operation and station blackout conditions. Ann. Nucl. Energy 2022, 166, 108751. [Google Scholar] [CrossRef]
- Asad, H.S.; Lee, E.W.M.; Yuen, R.K.K.; Wang, W.; Wang, L. Dissimilarity-based boosting technique for the modelling of complex HVAC systems. Energy Build. 2021, 247, 111151. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, W.; Du, X.; Xu, L.; Wei, H. Dynamic optimization method for cleaning cycle of condenser of nuclear power plant. Energy 2024, 294, 130814. [Google Scholar] [CrossRef]
- Lim, S.T.; Kim, K.M.; Kang, J.-Y.; Kim, T.; Jerng, D.-W.; Ahn, H.S. Thermal-hydraulic phenomena and heat removal performance of a passive containment cooling system according to exit loss coefficient. Nucl. Eng. Technol. 2024, 56, 4077–4086. [Google Scholar] [CrossRef]
- Węglarz, K.; Taler, D.; Taler, J.; Marcinkowski, M. General numerical method for hydraulic and thermal modelling of the steam superheaters. Energy 2024, 291, 130371. [Google Scholar] [CrossRef]
- Son, H.M.; Yang, S.H.; Park, C.; Lee, B.C. Transient thermal–hydraulic analysis of complete single channel blockage accident of generic 10 MW research reactor. Ann. Nucl. Energy 2015, 75, 44–53. [Google Scholar] [CrossRef]
- Li, Z.; Deng, S. An experimental study on the inherent operational characteristics of a direct expansion (DX) air conditioning (A/C) unit. Build. Environ. 2007, 42, 1–10. [Google Scholar] [CrossRef]
- Zhang, Y.; Mir, A.H. A review of brannerite structured materials for nuclear waste management. J. Nucl. Mater. 2023, 583, 154512. [Google Scholar] [CrossRef]
- Fernández-Seara, J.; Diz, R.; Uhía, F.J.; Dopazo, A.; Ferro, J.M. Experimental analysis of an air-to-air heat recovery unit for balanced ventilation systems in residential buildings. Energy Convers. Manag. 2011, 52, 635–640. [Google Scholar] [CrossRef]
- Panaras, G.; Mathioulakis, E.; Belessiotis, V. Solid desiccant air-conditioning systems—Design parameters. Energy 2011, 36, 2399–2406. [Google Scholar] [CrossRef]
- Zhou, F.; Cui, W.; Yang, L.; Hong, Y.; Qian, Q. Simulation and multi-aspect analysis of a novel waste heat recovery process for a power plant producing electricity, heating, desalinated water, liquefied carbon dioxide, and natural gas. Sep. Purif. Technol. 2023, 322, 124244. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, Y.; Yang, H. A simplified analytical model for indirect evaporative cooling considering condensation from fresh air: Development and application. Energy Build. 2015, 108, 387–400. [Google Scholar] [CrossRef]
- Qi, B.; Liang, J.; Tong, J. Fault Diagnosis Techniques for Nuclear Power Plants: A Review from the Artificial Intelligence Perspective. Energies 2023, 16, 1850. [Google Scholar] [CrossRef]
- Zheng, Y.; Hu, D.; Dai, Y. Simulation of the airborne radioactive substance distribution and monitoring of coolant leakage in a typical Nuclear Reactor Containment. Ann. Nucl. Energy 2016, 87, 462–470. [Google Scholar] [CrossRef]
- Prabhudharwadkar, D.M.; Iyer, K.N.; Mohan, N.; Bajaj, S.S.; Markandeya, S.G. Simulation of hydrogen distribution in an Indian Nuclear Reactor Containment. Nucl. Eng. Des. 2011, 241, 832–842. [Google Scholar] [CrossRef]
- Aghoyeh, R.G.; Khalafi, H. Design of water purification system for Tehran research reactor spent nuclear fuels storage pool (wet storage). Prog. Nucl. Energy 2011, 53, 119–124. [Google Scholar] [CrossRef]
- Zheng, T.; Liang, Y.; Li, Z.; Wang, X.; Zhou, W.; Zhang, Z.; Wang, C.; Hu, G. Nuclear power plant pipeline detection robot based on a new radiation-proof material. Ann. Nucl. Energy 2024, 202, 110455. [Google Scholar] [CrossRef]
- Cuan, Z.; Chen, Y. Evaluating two-phase fluid flow and heat transfer in pillow-plate heat exchangers with nanofluids for organic Rankine cycle in municipal solid waste power plant: A numerical simulation study. Eng. Anal. Bound. Elem. 2023, 155, 814–825. [Google Scholar] [CrossRef]
- Ge, G.; Abdel-Salam, M.R.; Besant, R.W.; Simonson, C.J. Research and applications of liquid-to-air membrane energy exchangers in building HVAC systems at University of Saskatchewan: A review. Renew. Sustain. Energy Rev. 2013, 26, 464–479. [Google Scholar] [CrossRef]
- Nasif, M.; Al-Waked, R.; Morrison, G.; Behnia, M. Membrane heat exchanger in HVAC energy recovery systems, systems energy analysis. Energy Build. 2010, 42, 1833–1840. [Google Scholar] [CrossRef]
- Li, D.; Lu, T.; Hua, N.; Wang, Y.; Zheng, L.; Jin, Y.; Ding, Y.; Li, Y. Dynamic modeling framework for solid-gas sorption systems. Energy Storage Sav. 2023, 2, 522–531. [Google Scholar] [CrossRef]
- Wu, H.; Zu, T.; Qiu, S.; Gao, X.; Zheng, Y.; Cao, L.; Tian, W. A fusion–fission hybrid reactor with water-cooled pressure tube blanket for energy production. Prog. Nucl. Energy 2013, 64, 1–7. [Google Scholar] [CrossRef]
- Yoo, J.; Ishiwatari, Y.; Oka, Y.; Liu, J. Conceptual design of compact supercritical water-cooled fast reactor with thermal hydraulic coupling. Ann. Nucl. Energy 2006, 33, 945–956. [Google Scholar] [CrossRef]
- Xing, J.; Song, D.; Wu, Y. HPR1000: Advanced Pressurized Water Reactor with Active and Passive Safety. Engineering 2016, 2, 79–87. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, X.; Miao, Y.; He, B.; Wang, C. Dispersion and behavior of hydrogen for the safety design of hydrogen production plant attached with nuclear power plant. Int. J. Hydrogen Energy 2020, 45, 20250–20255. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Q.; Ma, Y.; Liu, X. Research and Application Practice on Technical Supervision of Nuclear Island Mechanical Equipment in NPP. J. Phys. Conf. Ser. 2023, 2468, 012170. [Google Scholar] [CrossRef]
- Tian, M.; Cong, T.; Ma, Z.; Chen, R.; Tian, W.; Qiu, S.; Su, G.H. A new unidentified leak detection method based on the EVR ventilation condensate. Prog. Nucl. Energy 2017, 98, 11–22. [Google Scholar] [CrossRef]
- Li, L.; Zhang, J.; Lin, D.; Xu, M.; Zuo, Q.; Huang, J.; Bai, X.; Wei, Q.; Zhang, D. Research on the radioactive safety of industrial steam supplied by PWR nuclear power plant. Prog. Nucl. Energy 2025, 178, 105489. [Google Scholar] [CrossRef]
Equation | Number |
---|---|
(1) | |
(2) | |
(3) | |
(4) | |
(5) | |
(6) |
Plant Section | Primary Function | Role of HVAC | Connection to Other Sections |
---|---|---|---|
Nuclear Reactor | Energy generation | Cooling the surrounding environment and preventing overheating | Cooling system, safety systems |
Cooling System | Cooling the reactor and spent fuel pools | Coordination with cooling systems to maintain temperature and humidity | Reactor, safety systems |
HVAC System | Temperature, humidity, and air quality control | Maintaining environmental conditions, pollution control, and safety support | All sections |
Safety Systems | Handling potential accidents | Providing clean and cool air for safety systems and preventing contamination | Reactor, cooling system |
Control and Monitoring Systems | Monitoring overall plant performance | Sending temperature and humidity data to control systems | All sections |
Modeling Method | Article Title |
---|---|
Dissimilarity-based boosting technique for the modeling of complex HVAC systems | Boosting Technique |
Simulation and multi-aspect analysis of a novel waste heat recovery process | Simulation-Based Multi-Aspect |
An experimental study on the inherent operational characteristics of a DX unit | Direct Expansion Experimental Analysis |
Experimental analysis of an air-to-air heat recovery unit | Air-to-Air Heat Recovery Experiment |
Solid Desiccant System Design | Solid Desiccant System Design |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bigonah Ghalehsari, S.M.; Wang, J.; Zhao, T. A Review of the Evaluation, Simulation, and Control of the Air Conditioning System in a Nuclear Power Plant. Energies 2025, 18, 1719. https://doi.org/10.3390/en18071719
Bigonah Ghalehsari SM, Wang J, Zhao T. A Review of the Evaluation, Simulation, and Control of the Air Conditioning System in a Nuclear Power Plant. Energies. 2025; 18(7):1719. https://doi.org/10.3390/en18071719
Chicago/Turabian StyleBigonah Ghalehsari, Seyed Majid, Jiaming Wang, and Tianyi Zhao. 2025. "A Review of the Evaluation, Simulation, and Control of the Air Conditioning System in a Nuclear Power Plant" Energies 18, no. 7: 1719. https://doi.org/10.3390/en18071719
APA StyleBigonah Ghalehsari, S. M., Wang, J., & Zhao, T. (2025). A Review of the Evaluation, Simulation, and Control of the Air Conditioning System in a Nuclear Power Plant. Energies, 18(7), 1719. https://doi.org/10.3390/en18071719