Energy Hub Operation Under Uncertainty: Monte Carlo Risk Assessment Using Gaussian and KDE-Based Data
Abstract
:1. Introduction
- We evaluate both parametric (normal) and non-parametric (KDE) methods, showing the critical importance of properly calibrated distribution parameters and revealing how distribution shapes influence operational decisions and costs across different optimization frameworks;
- We develop a Monte Carlo approach that accommodates multiple scenarios. This consistent methodology allows for a direct and systematic comparison between these two frameworks;
- We integrate the CityLearn dataset, which contains real building energy consumption and solar generation patterns and show how the resulting decisions differ from those based solely on synthetic assumptions;
- We apply a range of risk assessment metrics like Value at Risk (VaR) and Conditional Value at Risk (CVaR) to quantify risk profiles, revealing useful insights into distribution assumptions.
2. Literature Review
2.1. Energy Hubs and Smart Buildings
2.2. Stochastic Optimization
2.3. Parametric vs. Non-Parametric Approaches
2.4. Monte Carlo
2.5. Risk-Assessment Metrics
2.6. Approaches for Uncertainty Modeling
2.7. Research Gaps and Objectives
3. Methodology
3.1. Gaussian Synthetic Data
3.1.1. Deterministic Optimization Based on the Gaussian Synthetic Data
3.1.2. Monte-Carlo Using Normally Distributed Synthetic Data
3.2. Actual Data
3.2.1. Scaling the Actual Data
3.2.2. Applying Kernel Density Estimation
3.2.3. Unscaling the Values
3.2.4. Monte Carlo Using KDE-Based Data
4. Case Study
4.1. Gaussian Synthetic Data Generation
4.1.1. Deterministic Optimization Based on the Gaussian Synthetic Data
4.1.2. Monte-Carlo Using Gaussian Synthetic Data
4.2. Actual Data
4.2.1. Scaling the Actual Data
4.2.2. Applying Kernel Density Estimation
4.2.3. Unscaling the Values
4.2.4. Monte Carlo Using KDE-Based Synthetic Data
5. Discussion
5.1. Model Comparisons Under Normal vs. KDE
5.2. Real World Considerations
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Sets and indices | |
Set of hourly time periods, indexed | |
Parameters | |
Cost (USD) for the energy hub and of purchasing electricity from the main grid (USD/kWh) | |
Cost (USD) for the energy hub and of charging/discharging its battery (USD/kWh) | |
Cost (USD) for the energy hub and of curtailing the output of its renewable unit (USD/kWh) | |
Max possible electricity output (kWh) from the renewable unit of the energy hub at h | |
Electricity demand of the energy hub at hour h (kWh) | |
Initial state of charge of the battery unit of the energy hub. | |
Charging efficiency of the battery unit of the energy hub | |
Discharging efficiency of the battery unit of the energy hub | |
Energy capacity (maximum possible state of charge) of battery unit (kWh) | |
Upper bound to the electricity (kWh) charged in the battery unit | |
Upper bound to the electricity (kWh) discharged in the battery unit | |
Decision variables | |
Curtailed output from the renewable unit of the energy hub at hour h (kWh) | |
Electricity (kWh) discharged from the battery of the energy hub at hour h | |
Electricity (kWh) charged into the battery of the energy hub at hour h | |
Electricity (kWh) that the energy hub purchases from the main grid at hour h | |
Output (kWh) of the renewable generation unit of the energy hub at hour h | |
State of charge (kWh) of the battery unit of the energy hub at hour h |
References
- Mohammadi, M.; Noorollahi, Y.; Mohammadi-Ivatloo, B.; Yousefi, H.; Jalilinasrabady, S. Optimal Scheduling of Energy Hubs in the Presence of Uncertainty-A Review. J. Energy Manag. Technol. 2017, 1, 1–17. [Google Scholar] [CrossRef]
- Varathan, G.; Belwin Edward, J. A review of uncertainty management approaches for active distribution system planning. Renew. Sustain. Energy Rev. 2024, 205, 114808. [Google Scholar] [CrossRef]
- Dolatabadi, A.; Jadidbonab, M.; Mohammadi-Ivatloo, B. Short-Term Scheduling Strategy for Wind-Based Energy Hub: A Hybrid Stochastic/IGDT Approach. IEEE Trans. Sustain. Energy 2019, 10, 438–448. [Google Scholar] [CrossRef]
- Moeini-Aghtaie, M.; Safdarian, A.; Parvini, Z.; Aramoun, F. Optimal Stochastic Short-Term Scheduling of Renewable Energy Hubs Taking into Account the Uncertainties of the Renewable Sources. In Operation, Planning, and Analysis of Energy Storage Systems in Smart Energy Hubs; Mohammadi-Ivatloo, B., Jabari, F., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Eladl, A.A.; El-Afifi, M.I.; Saadawi, M.M.; Siano, P.; Sedhom, B.E. Multi-Objective optimal scheduling of energy Hubs, integrating different solar generation technologies considering uncertainty. Int. J. Electr. Power Energy Syst. 2024, 161, 110198. [Google Scholar] [CrossRef]
- Giannelos, S.; Borozan, S.; Konstantelos, I.; Strbac, G. Option value, investment costs and deployment levels of smart grid technologies. Sustain. Energy Res. 2024, 11, 47. [Google Scholar] [CrossRef]
- Leprince, J.; Schledorn, A.; Guericke, D.; Dominkovic, D.F.; Madsen, H.; Zeiler, W. Can occupant behaviors affect urban energy planning? Distributed stochastic optimization for energy communities. Appl. Energy 2023, 348, 121589. [Google Scholar] [CrossRef]
- Lasemi, M.A.; Arabkoohsar, A.; Hajizadeh, A. Optimal Design of Green Energy Hub considering Multi-Generation Energy Storage System. In Proceedings of the 2022 IEEE International Conference on Power Systems Technology (POWERCON), Kuala Lumpur, Malaysia, 12–14 September 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Rizi, D.T.; Nazari, M.H.; Hosseinian, S.H.; Fani, M.; Gharehpetian, G.B. Analyzing Electric Heat Pump Modeling in an Advanced Energy Hub with Renewable Energy Integration. In Proceedings of the 2024 28th International Electrical Power Distribution Conference (EPDC), Zanjan, Iran, 23–25 April 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Asvini, M.S.; Amudha, T. Deterministic optimization technique proposed for optimal reservoir release of Thirumurthi and Amaravathi reservoirs. In Proceedings of the 2014 IEEE International Conference on Computational Intelligence and Computing Research, Coimbatore, India, 18–20 December 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Nozarian, M.; Fereidunian, A.; Barati, M. Reliability-Oriented Planning Framework for Smart Cities: From Interconnected Micro Energy Hubs to Macro Energy Hub Scale. IEEE Syst. J. 2023, 17, 3798–3809. [Google Scholar] [CrossRef]
- Wu, J. Computer Application Scenario Design of Stochastic Optimization and Artificial Fish School Algorithm. In Proceedings of the 2022 International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, 16–18 March 2022; pp. 1502–1505. [Google Scholar] [CrossRef]
- Liu, C.; Lee, C.; Chen, H.; Mehrotra, S. Stochastic Robust Mathematical Programming Model for Power System Optimization. IEEE Trans. Power Syst. 2016, 31, 821–822. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, L.; Fu, Y. Real-Time Price-Based Demand Response Management for Residential Appliances via Stochastic Optimization and Robust Optimization. IEEE Trans. Smart Grid 2012, 3, 1822–1831. [Google Scholar] [CrossRef]
- Singh, V.; Moger, T.; Jena, D. Uncertainty handling techniques in power systems: A critical review. Electr. Power Syst. Res. 2022, 203, 107633. [Google Scholar]
- Kini, K.R.; Harrou, F.; Madakyaru, M.; Sun, Y. Enhancing Wind Turbine Performance: Statistical Detection of Sensor Faults Based on Improved Dynamic Independent Component Analysis. Energies 2023, 16, 5793. [Google Scholar] [CrossRef]
- Gao, Z.; Lim, D.; Schwartz, K.G.; Mavris, D.N. A Nonparametric-based Approach for the Characterization and Propagation of Epistemic Uncertainty due to Small Datasets. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019. [Google Scholar]
- Zhang, Y.; Wang, J.; Wang, X. Review on probabilistic forecasting of wind power generation. Renew. Sustain. Energy Rev. 2014, 32, 255–270. [Google Scholar] [CrossRef]
- Khorramdel, B.; Chung, C.Y.; Safari, N.; Price, G.C.D. A Fuzzy Adaptive Probabilistic Wind Power Prediction Framework Using Diffusion Kernel Density Estimators. IEEE Trans. Power Syst. 2018, 33, 7109–7121. [Google Scholar] [CrossRef]
- Zeng, L.; Hu, H.; Tang, H.; Zhang, X.; Zhang, D. Carbon emission price point-interval forecasting based on multivariate variational mode decomposition and attention-LSTM model. Appl. Soft Comput. 2024, 157, 111543. [Google Scholar] [CrossRef]
- Alvarez, G.E. Stochastic optimization considering the uncertainties in the electricity demand, natural gas infrastructures, photovoltaic units, and wind generation. Comput. Chem. Eng. 2022, 160, 107712. [Google Scholar] [CrossRef]
- Sakki, G.; Tsoukalas, I.; Kossieris, P.; Makropoulos, C.; Efstratiadis, A. Stochastic simulation-optimization framework for the design and assessment of renewable energy systems under uncertainty. Renew. Sustain. Energy Rev. 2022, 168, 112886. [Google Scholar] [CrossRef]
- Napolitano, F.; Tossani, F.; Borghetti, A.; Nucci, C.A. Lightning Performance Assessment of Power Distribution Lines by Means of Stratified Sampling Monte Carlo Method. IEEE Trans. Power Deliv. 2018, 33, 2571–2577. [Google Scholar] [CrossRef]
- Smyl, S.; Oreshkin, B.N.; Pełka, P.; Dudek, G. Any-Quantile Probabilistic Forecasting of Short-Term Electricity Demand. arXiv 2024, arXiv:2404.17451. Available online: https://arxiv.org/abs/2404.17451 (accessed on 1 March 2025).
- Cabrera-Tobar, A.; Massi Pavan, A.; Petrone, G.; Spagnuolo, G.A. Review of the Optimization and Control Techniques in the Presence of Uncertainties for the Energy Management of Microgrids. Energies 2022, 15, 9114. [Google Scholar] [CrossRef]
- Mokaramian, E.; Shayeghi, H.; Sedaghati, F.; Safari, A.; Alhelou, H.H. A CVaR-Robust-Based Multi-Objective Optimization Model for Energy Hub Considering Uncertainty and E-Fuel Energy Storage in Energy and Reserve Markets. IEEE Access 2021, 9, 109447–109464. [Google Scholar] [CrossRef]
- Javadi, M.S.; Lotfi, M.; Nezhad, A.E.; Anvari-Moghaddam, A.; Guerrero, J.M.; Catalao, J.P.S. Optimal Operation of Energy Hubs Considering Uncertainties and Different Time Resolutions. IEEE Trans. Ind. Appl. 2020, 56, 5543–5552. [Google Scholar] [CrossRef]
- Liu, Z.; Zeng, M.; Zhou, H.; Gao, J. A Planning Method of Regional Integrated Energy System Based on the Energy Hub Zoning Model. IEEE Access 2021, 9, 32161–32170. [Google Scholar] [CrossRef]
- Meng, Y.; Shi, F.; Tang, L.; Sun, D. Improvement of Reinforcement Learning with Supermodularity. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 5298–5309. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, W.; Chen, Y.; Vai, M.I. Robust Classification of Encrypted Network Services Using Convolutional Neural Networks Optimized by Information Bottleneck Method. IEEE Access 2025, 13, 36995–37005. [Google Scholar] [CrossRef]
- Abbasi, M.; Florez, S.L.; Shahraki, A.; Taherkordi, A.; Prieto, J.; Corchado, J.M. Class Imbalance in Network Traffic Classification: An Adaptive Weight Ensemble-of-Ensemble Learning Method. IEEE Access 2025, 13, 26171–26192. [Google Scholar]
- Fu, M.; Wang, P.; Liu, M.; Zhang, Z.; Zhou, X. IoV-BERT-IDS: Hybrid Network Intrusion Detection System in IoV Using Large Language Models. IEEE Trans. Veh. Technol. 2025, 74, 1909–1921. [Google Scholar]
- Wang, X.; Lu, Z.; Wang, X.; He, M. GETRF: A General Framework for Encrypted Traffic Identification with Robust Representation Based on Datagram Structure. IEEE Trans. Cogn. Commun. Netw. 2024, 10, 2045–2060. [Google Scholar]
- Alonso-Travesset, À.; Martín, H.; Coronas, S.; de la Hoz, J. Optimization Models under Uncertainty in Distributed Generation Systems: A Review. Energies 2022, 15, 1932. [Google Scholar] [CrossRef]
- Dong, Z.; Zhang, X.; Zhang, L.; Giannelos, S.; Strbac, G. Flexibility enhancement of urban energy systems through coordinated space heating aggregation of numerous buildings. Appl. Energy 2024, 374, 123971. [Google Scholar] [CrossRef]
- Borozan, S.; Giannelos, S.; Falugi, P.; Moreira, A.; Strbac, G. Machine Learning-Enhanced Benders Decomposition Approach for the Multi-Stage Stochastic Transmission Expansion Planning Problem. Electr. Power Syst. Res. 2024, 237, 110985. [Google Scholar] [CrossRef]
- Giannelos, S.; Borozan, S.; Strbac, G.A. Backwards Induction Framework for Quantifying the Option Value of Smart Charging of Electric Vehicles and the Risk of Stranded Assets under Uncertainty. Energies 2022, 15, 3334. [Google Scholar] [CrossRef]
- Giannelos, S.; Djapic, P.; Pudjianto, D.; Strbac, G. Quantification of the Energy Storage Contribution to Security of Supply through the F-Factor Methodology. Energies 2020, 13, 826. [Google Scholar] [CrossRef]
- Giannelos, S.; Borozan, S.; Strbac, G.; Zhang, T.; Kong, W. Vehicle-to-Grid: Quantification of its contribution to security of supply through the F-Factor methodology. Sustain. Energy Res. 2024, 11, 32. [Google Scholar] [CrossRef]
- Giannelos, S.; Moreira, A.; Papadaskalopoulos, D.; Borozan, S.; Pudjianto, D.; Konstantelos, I.; Sun, M.; Strbac, G.A. Machine Learning Approach for Generating and Evaluating Forecasts on the Environmental Impact of the Buildings Sector. Energies 2023, 16, 2915. [Google Scholar] [CrossRef]
- Giannelos, S.; Bellizio, F.; Strbac, G.; Zhang, T. Machine learning approaches for predictions of CO2 emissions in the building sector. Electr. Power Syst. Res. 2024, 235, 110735. [Google Scholar] [CrossRef]
- Münster, M.; Sneum, D.M.; Pedersen, R.B.; Bühler, F.; Elmegaard, B.; Giannelos, S.; Zhang, X.; Strbac, G.; Berger, M.; Radu, D.; et al. Sector Coupling: Concepts, State-of-the-Art and Perspectives; European Technology and Innovation Platform: Brussels, Belgium, 2020. [Google Scholar]
- Giannelos, S.; Jain, A.; Borozan, S.; Falugi, P.; Moreira, A.; Bhakar, R.; Mathur, J.; Strbac, G. Long-Term Expansion Planning of the Transmission Network in India under Multi-Dimensional Uncertainty. Energies 2021, 14, 7813. [Google Scholar] [CrossRef]
- Holttinen, H.; Kiviluoma, J.; Helistö, N.; Levy, T.; Menemenlis, N.; Jun, L.; Cutululis, N.; Koivisto, M.; Das, K.; Orths, A.; et al. Design and Operation of Energy Systems with Large Amounts of Variable Generation: Final Summary Report, IEA Wind TCP Task 25; VTT Technical Research Centre of Finland: Espoo, Finland, 2021. [Google Scholar] [CrossRef]
- Beulertz, D.; Charousset, S.; Most, D.; Giannelos, S.; Yueksel-Erguen, I. Development of a Modular Framework for Future Energy System Analysis. In Proceedings of the 2019 54th International Universities Power Engineering Conference (UPEC), Bucharest, Romania, 3–6 September 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Giannelos, S.; Konstantelos, I.; Strbac, G. Stochastic optimisation-based valuation of smart grid options under firm DG contracts. In Proceedings of the 2016 IEEE International Energy Conference (ENERGYCON), Leuven, Belgium, 4–6 April 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Giannelos, S.; Konstantelos, I.; Strbac, G. Option Value of Demand-Side Response Schemes Under Decision-Dependent Uncertainty. IEEE Trans. Power Syst. 2018, 33, 5103–5113. [Google Scholar] [CrossRef]
- Giannelos, S.; Konstantelos, I.; Strbac, G. Investment Model for Cost-effective Integration of Solar PV Capacity under Uncertainty using a Portfolio of Energy Storage and Soft Open Points. In Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Amann, G.; Escobedo Bermúdez, V.R.; Boskov-Kovacs, E.; Gallego Amores, S.; Giannelos, S.; Iliceto, A.; Ilo, A.; Chavarro, J.R.; Samovich, N.; Schmitt, L.; et al. E-Mobility Deployment and Impact on Grids. In Impact of EV and Charging Infrastructure on European T&D Grids: Innovation Needs; Gallego Amores, S., Ed.; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar] [CrossRef]
- Becker, S.; Cheridito, P.; Jentzen, A. Deep optimal stopping. J. Mach. Learn. Res. 2019, 20, 1–25. [Google Scholar]
- Bertsekas, D.P. II: Approximate Dynamic Programming. Dynamic Programming and Optimal Control; Athena Scientific: Belmont, MA, USA, 2012. [Google Scholar]
- Bunn, D.W.; Oliveira, F.S. Agent-based analysis of technological diversification and specialization in electricity markets. Eur. J. Oper. Res. 2007, 181, 1265–1278. [Google Scholar] [CrossRef]
- Conejo, A.J.; Carrión, M.; Morales, J.M. Decision Making Under Uncertainty in Electricity Markets; Springer: New York, NY, USA, 2010. [Google Scholar]
- Dong, D.; Chen, C.; Li, H.; Tarn, T.-J. Quantum Reinforcement Learning. IEEE Trans. Syst. Man Cybern. Part B. (Cybernetics) 2008, 38, 1207–1220. [Google Scholar] [CrossRef]
- Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep reinforcement learning. arXiv 2015, arXiv:1509.02971. Available online:https://arxiv.org/abs/1509.02971 (accessed on 1 March 2025).
- Pannakkong, W.; Vinh, V.T.; Tuyen, N.N.M.; Buddhakulsomsiri, J.A. A reinforcement learning approach for ensemble machine learning models in peak electricity forecasting. Energies 2023, 16, 5099. [Google Scholar] [CrossRef]
- Shengguang, P. Overview of Meta-Reinforcement Learning Research. In Proceedings of the 2020 2nd International Conference on Information Technology and Computer Application (ITCA), Guangzhou, China, 18–20 December 2020; pp. 54–57. [Google Scholar] [CrossRef]
- Wiencek, R.; Ghosh, S. Deep Reinforcement Learning for Adaptive Optimization of PI Control for Microgrid Under Fault and Variable Loading. In Proceedings of the 2024 6th Global Power, Energy and Communication Conference (GPECOM), Budapest, Hungary, 4–7 June 2024; pp. 826–831. [Google Scholar]
- Su, W.; Li, Z.; Xu, M.; Kang, J.; Niyato, D.; Xie, S. Compressing Deep Reinforcement Learning Networks with a Dynamic Structured Pruning Method for Autonomous Driving. IEEE Trans. Veh. Technol. 2024, 73, 18017–18030. [Google Scholar]
- Luo, B.; Wu, Z.; Zhou, F.; Wang, B.C. Human-in-the-Loop Reinforcement Learning in Continuous-Action Space. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 15735–15744. [Google Scholar]
- Han, Y.; Wang, X.; He, M.; Wang, X.; Guo, S. Intrusion Detection for Encrypted Flows Using Single Feature Based on Graph Integration Theory. IEEE Internet Things J. 2024, 11, 17589–17601. [Google Scholar]
- Midhula, K.S.; Kumar, P.A.R. An Adaptive Congestion Control Protocol for Wireless Networks Using Deep Reinforcement Learning. IEEE Trans. Netw. Serv. Manag. 2024, 21, 2027–2043. [Google Scholar]
- Niu, D.; Cheng, G.; Chen, Z. TDS-KRFI: Reference Frame Identification for Live Web Streaming Toward HTTP Flash Video Protocol. IEEE Trans. Netw. Serv. Manag. 2023, 20, 4198–4215. [Google Scholar]
- Li, Z.; Zhao, H.; Zhao, J.; Jiang, Y.; Bu, F. SAT-Net: A Staggered Attention Network using Graph Neural Networks for Encrypted Traffic Classification. J. Netw. Comput. Appl. 2024, 233, 104069. [Google Scholar]
- Hariri, A.M.A.; Potts, C.N. A Branch and Bound Algorithm to Minimize the Number of Late Jobs in a Permutation Flowshop. Eur. J. Oper. Res. 1989, 38, 228–237. [Google Scholar]
- Maravelias, C.T.; Grossmann, I.E. A hybrid milp/cp decomposition approach for the continuous time scheduling of multipurpose batch plants. Comput. Chem. Eng. 2004, 28, 1921–1949. [Google Scholar]
- Hooker, J.N. Planning and Scheduling by Logic-Based Benders Decomposition. Oper. Res. 2007, 55, 588–602. [Google Scholar] [CrossRef]
- Harjunkoski, I.; Grossmann, I.E. Decomposition techniques for multistage scheduling problems using mixed-integer and constraint programming methods. Comput. Chem. Eng. 2002, 26, 1533–1552. [Google Scholar] [CrossRef]
- Rebennack, S. Combining sampling-based and scenario-based nested Benders decomposition methods: Application to stochastic dual dynamic programming. Math. Program. 2016, 156, 343. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Vo, D.N. Modified cuckoo search algorithm for short-term hydrothermal scheduling. Int. J. Electr. Power Energy Syst. 2015, 65, 271. [Google Scholar] [CrossRef]
- Houben, R.; Bobekh, A.; Preuschoff, F.; Moser, A. Optimizing large-scale Integrated Energy Systems with Storage Facilities: A parallelized approach. In Proceedings of the 2024 9th Asia Conference on Power and Electrical Engineering (ACPEE), Shanghai, China, 11–13 April 2024; pp. 24–30. [Google Scholar]
- Mehrtash, M.; Hobbs, B.F.; Mahroo, R.; Cao, Y. Does Choice of Power Flow Representation Matter in Transmission Expansion Optimization? A Quantitative Comparison for a Large-Scale Test System. IEEE Trans. Ind. Appl. 2024, 60, 1433–1441. [Google Scholar] [CrossRef]
- García-Cerezo, Á.; García-Bertrand, R.; Baringo, L. Computational Performance Enhancement Strategies for Risk-Averse Two-Stage Stochastic Generation and Transmission Network Expansion Planning. IEEE Trans. Power Syst. 2024, 39, 273–286. [Google Scholar] [CrossRef]
- Yu, N.; Qian, B.; Hu, R.; Chen, Y.; Wang, L. Solving open vehicle problem with time window by hybrid column generation algorithm. J. Syst. Eng. Electron. 2022, 33, 997–1009. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannelos, S.; Pudjianto, D.; Zhang, T.; Strbac, G. Energy Hub Operation Under Uncertainty: Monte Carlo Risk Assessment Using Gaussian and KDE-Based Data. Energies 2025, 18, 1712. https://doi.org/10.3390/en18071712
Giannelos S, Pudjianto D, Zhang T, Strbac G. Energy Hub Operation Under Uncertainty: Monte Carlo Risk Assessment Using Gaussian and KDE-Based Data. Energies. 2025; 18(7):1712. https://doi.org/10.3390/en18071712
Chicago/Turabian StyleGiannelos, Spyros, Danny Pudjianto, Tai Zhang, and Goran Strbac. 2025. "Energy Hub Operation Under Uncertainty: Monte Carlo Risk Assessment Using Gaussian and KDE-Based Data" Energies 18, no. 7: 1712. https://doi.org/10.3390/en18071712
APA StyleGiannelos, S., Pudjianto, D., Zhang, T., & Strbac, G. (2025). Energy Hub Operation Under Uncertainty: Monte Carlo Risk Assessment Using Gaussian and KDE-Based Data. Energies, 18(7), 1712. https://doi.org/10.3390/en18071712