Public Acceptance of the Underground Storage of Hydrogen: Lessons Learned from the Geological Storage of CO2
Abstract
:1. Introduction
Purpose and Scope of This Study
2. Analysis of Publications on Public Acceptance of Underground Storage of CO2 and H2
2.1. Experiences with CO2 Storage
2.2. Public Acceptance of the UHS in the Literature
3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CCS | Carbon capture and storage |
CCU | Carbon capture and utilisation |
CCUS | Carbon capture, utilisation, and storage |
iCCS | CCS in industry |
RES | Renewable energy sources |
SEL | Societal embeddedness level |
SRL | Social readiness level |
TRL | Technological readiness level |
UGS | Underground natural gas storage |
UHS | Underground hydrogen storage |
References
- Maggio, G.; Nicita, A.; Squadrito, G. How the hydrogen production from RES could change energy and fuel markets: A review of recent literature. Int. J. Hydrogen Energy 2019, 44, 11371–11384. [Google Scholar] [CrossRef]
- Matos, C.R.; Carneiro, J.F.; Silva, P.P. Overview of Large-Scale Underground Energy Storage Technologies for Integration of Renewable Energies and Criteria for Reservoir Identification. J. Energy Storage 2019, 21, 241–258. [Google Scholar] [CrossRef]
- Noussan, M.; Raimondi, P.P.; Scita, R.; Hafner, M. The role of green and blue hydrogen in the energy transition—A technological and geopolitical perspective. Sustainability 2021, 13, 298. [Google Scholar] [CrossRef]
- Chau, K.; Djire, A.; Khan, F. Review and analysis of the hydrogen production technologies from a safety perspective. Int. J. Hydrogen Energy 2022, 47, 13990–14007. [Google Scholar] [CrossRef]
- Lebrouhi, B.E.; Djoupo, J.J.; Lamrani, B.; Benabdelaziz, K.; Kousksou, T. Global hydrogen development—A technological and geopolitical overview. Int. J. Hydrogen Energy 2022, 47, 7016–7048. [Google Scholar] [CrossRef]
- Nikolaidis, P.; Poullikkas, A. A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 2017, 67, 597–611. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelghafar, A.A.; Baroutaji, A.; Sayed, E.T.; Alami, A.H.; Rezk, H.; Abdelkareem, M.A. Large-vscale hydrogen production and storage technologies: Current status and future directions. Int. J. Hydrogen Energy 2021, 46, 23498–23528. [Google Scholar] [CrossRef]
- Amez Arenillas, I.; Ortega, M.F.; García Torrent, J.; Llamas Moya, B. Hydrogen as an Energy Vector: Present and Future. In Sustaining Tomorrow via Innovative Engineering; World Scientific: Singapore, 2021; pp. 83–129. [Google Scholar]
- Chapman, A.; Itaoka, K.; Hirose, K.; Davidson, F.T.; Nagasawa, K.; Lloyd, A.C.; Webber, M.E.; Kurban, Z.; Managi, S.; Tamaki, T.; et al. A review of four case studies assessing the potential for hydrogen penetration of the future energy system. Int. J. Hydrogen Energy 2019, 44, 6371–6382. [Google Scholar] [CrossRef]
- Griffiths, S.; Sovacool, B.K.; Kim, J.; Bazilian, M.; Uratani, J.M. Industrial decarbonization via hydrogen: A critical and systematic review of developments, socio-technical systems and policy options. Energy Res. Soc. Sci. 2021, 80, 102208. [Google Scholar] [CrossRef]
- Ishaq, H.; Dincer, I.; Crawford, C. A review on hydrogen production and utilization: Challenges and opportunities. Int. J. Hydrogen Energy 2022, 47, 26238–26264. [Google Scholar] [CrossRef]
- Maka, A.O.M.; Mehmood, M. Green hydrogen energy production: Current status and potential. Clean Energy 2024, 8, 1–7. [Google Scholar] [CrossRef]
- Fernández-Arias, P.; Antón-Sancho, Á.; Lampropoulos, G.; Vergara, D. On Green Hydrogen Generation Technologies: A Bibliometric Review. Appl. Sci. 2024, 14, 2524. [Google Scholar] [CrossRef]
- Hammi, Z.; Labjar, N.; Dalimi, M.; El Hamdouni, Y.; Lotfi, E.M.; El Hajjaji, S. Green hydrogen: A holistic review covering life cycle assessment, environmental impacts, and color analysis. Int. J. Hydrogen Energy 2024, 80, 1030–1045. [Google Scholar] [CrossRef]
- Abdalla, A.M.; Hossain, S.; Nisfindy, O.B.; Azad, A.T.; Dawood, M.; Azad, A.K. Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Convers. Manag. 2018, 165, 602–627. [Google Scholar] [CrossRef]
- Andersson, J.; Grönkvist, S. Large-scale storage of hydrogen. Int. J. Hydrogen Energy 2019, 44, 11901–11919. [Google Scholar] [CrossRef]
- Elberry, A.M.; Thakur, J.; Santasalo-Aarnio, A.; Larmi, M. Large-scale compressed hydrogen storage as part of renewable electricity storage systems. Int. J. Hydrogen Energy 2021, 46, 15671–15690. [Google Scholar] [CrossRef]
- Yue, M.; Lambert, H.; Pahon, E.; Roche, R.; Jemei, S.; Hissel, D. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renew. Sustain. Energy Rev. 2021, 146, 111180. [Google Scholar] [CrossRef]
- Hren, R.; Vujanović, A.; Van Fan, Y.; Klemeš, J.J.; Krajnc, D.; Čuček, L. Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment. Renew. Sustain. Energy Rev. 2023, 173, 113113. [Google Scholar] [CrossRef]
- Yang, M.; Hunger, R.; Berrettoni, S.; Sprecher, B.; Wang, B. A review of hydrogen storage and transport technologies. Clean Energy 2023, 7, 190–216. [Google Scholar] [CrossRef]
- Tarkowski, R. Underground hydrogen storage: Characteristics and prospects. Renew. Sustain. Energy Rev. 2019, 105, 86–94. [Google Scholar] [CrossRef]
- Thiyagarajan, S.R.; Emadi, H.; Hussain, A.; Patange, P.; Watson, M. A comprehensive review of the mechanisms and efficiency of underground hydrogen storage. J. Energy Storage 2022, 51, 104490. [Google Scholar] [CrossRef]
- Zivar, D.; Kumar, S.; Foroozesh, J. Underground hydrogen storage: A comprehensive review. Int. J. Hydrogen Energy 2021, 46, 23436–23462. [Google Scholar] [CrossRef]
- Raza, A.; Arif, M.; Glatz, G.; Mahmoud, M.; Al Kobaisi, M.; Alafnan, S.; Iglauer, S. A holistic overview of underground hydrogen storage: Influencing factors, current understanding, and outlook. Fuel 2022, 330, 125636. [Google Scholar] [CrossRef]
- Muhammed, N.S.; Haq, B.; Al Shehri, D.; Al-Ahmed, A.; Rahman, M.M.; Zaman, E. A review on underground hydrogen storage: Insight into geological sites, influencing factors and future outlook. Energy Rep. 2022, 8, 461–499. [Google Scholar] [CrossRef]
- Tarkowski, R.; Uliasz-Misiak, B. Towards underground hydrogen storage: A review of barriers. Renew. Sustain. Energy Rev. 2022, 162, 112451. [Google Scholar] [CrossRef]
- Hurtado, A.; López-Mederos, A.; Mazadiego, L.F.; Rodríguez-Pons, R.; Valle-Falcones, L.M.; Grima-Olmedo, C.; Eguilior, S. Health, safety and environmental risk assessment tool applied to site selection for geological hydrogen storage in saline aquifers. Int. J. Hydrogen Energy 2024, 84, 78–88. [Google Scholar] [CrossRef]
- Sharma, S.; Cook, P.; Robinson, S.; Anderson, C. Regulatory challenges and managing public perception in planning a geological storage pilot project in Australia. Int. J. Greenh. Gas Control. 2007, 1, 247–252. [Google Scholar] [CrossRef]
- Tarkowski, R.; Lankof, L.; Luboń, K.; Michalski, J.; Le Gallo, Y.; Tarkowski, R. Hydrogen storage capacity of salt caverns and deep aquifers versus demand for hydrogen storage: A case study of Poland. Appl. Energy 2024, 355, 122268. [Google Scholar] [CrossRef]
- Tackie-Otoo, B.N.; Haq, M.B. A comprehensive review on geo-storage of H2 in salt caverns: Prospect and research advances. Fuel 2024, 356, 129609. [Google Scholar] [CrossRef]
- Hydrogen Europe. The World’s Largest Green H2 Underground Storage Project. Available online: https://hydrogeneurope.eu/the-worlds-largest-green-h2-underground-storage-project/ (accessed on 9 January 2025).
- EUH2STARS. EUH2STARS Project. Available online: https://www.euh2stars.eu/en/project/project-description.html (accessed on 11 January 2025).
- Uniper SE. Hydrogen Pilot Cavern Krummhörn. Available online: https://www.uniper.energy/hydrogen-pilot-cavern (accessed on 7 January 2025).
- HyStock. Project HyStock. Available online: https://www.hystock.nl/en (accessed on 9 January 2025).
- Hypster. HyPSTER—1st Demonstrator for H2 Green Storage. Available online: https://hypster-project.eu/ (accessed on 9 January 2025).
- Stevenson, R.; Leadbetter, A.; Day, L.; Stevenson, A.R.; Offices, H.B. Project HySECURE phase 1 Summary Sept 2019; Inovyn: Lostock Gralam, UK, 2019. [Google Scholar]
- Derrick, M. Top 10: Hydrogen Projects. Energy Digital Magazine, 22 May 2024. [Google Scholar]
- Mohideen, M.M.; Subramanian, B.; Sun, J.; Ge, J.; Guo, H.; Radhamani, A.V.; Ramakrishna, S.; Liu, Y. Techno-economic analysis of different shades of renewable and non-renewable energy-based hydrogen for fuel cell electric vehicles. Renew. Sustain. Energy Rev. 2023, 174, 113153. [Google Scholar] [CrossRef]
- Stalker, L.; Roberts, J.J.; Mabon, L.; Hartley, P.G. Communicating leakage risk in the hydrogen economy: Lessons already learned from geoenergy industries. Front. Energy Res. 2022, 10, 869264. [Google Scholar] [CrossRef]
- Mendrinos, D.; Karytsas, S.; Polyzou, O.; Karytsas, C.; Nordø, Å.D.; Midttømme, K.; Otto, D.; Gross, M.; Sprenkeling, M.; Peuchen, R.; et al. Understanding Societal Requirements of CCS Projects: Application of the Societal Embeddedness Level Assessment Methodology in Four National Case Studies. Clean Technol. 2022, 4, 893–907. [Google Scholar] [CrossRef]
- van Gesse, S.; Hajibeygi, H. Hydrogen TCP-Task 42: Underground Hydrogen Storage—Technology Monitor Report 2023; IEA Hydrogen TCP: Paris, France, 2023; Available online: https://www.ieahydrogen.org/task/task-42-underground-hydrogen-storage/ (accessed on 8 January 2025).
- Shackley, S.; Mander, S.; Reiche, A. Public perceptions of underground coal gasification in the United Kingdom. Energy Policy 2006, 34, 3423–3433. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, S.; Hua, T.; Zeng, J.; Lan, M. CO2 geological storage: A bibliometric analysis of research trends. Heliyon 2024, 10, e34479. [Google Scholar] [CrossRef] [PubMed]
- Storrs, K.; Lyhne, I.; Drustrup, R. A comprehensive framework for feasibility of CCUS deployment: A meta-review of literature on factors impacting CCUS deployment. Int. J. Greenh. Gas Control 2023, 125, 103878. [Google Scholar] [CrossRef]
- Nielsen, J.A.E.; Stavrianakis, K.; Morrison, Z. Community acceptance and social impacts of carbon capture, utilization and storage projects: A systematic meta-narrative literature review. PLoS ONE 2022, 17, e0272409. [Google Scholar] [CrossRef]
- Rojas-Peña, D.; Quintana-Rojo, C.; Tarancón, M.A.; Ruiz-Fuensanta, M.J. Social acceptance of renewable energies: A meta-analytic review of 40 years of related literature. Environ. Dev. Sustain. 2024, 26, 1–28. [Google Scholar] [CrossRef]
- Akhurst, M.; Kirk, K.; Neele, F.; Grimstad, A.A.; Bentham, M.; Bergmo, P. Storage Readiness Levels: Communicating the maturity of site technical understanding, permitting and planning needed for storage operations using CO2. Int. J. Greenh. Gas Control 2021, 110, 103402. [Google Scholar] [CrossRef]
- US-DOE. Ensuring Safe and Reliable Underground Natural Gas Storage Final Report of the Interagency Task Force on Natural Gas Storage Safety; United States Department of Energy: Washington, DC, USA, 2016.
- Arning, K.; Offermann-van Heek, J.; Linzenich, A.; Kaetelhoen, A.; Sternberg, A.; Bardow, A.; Ziefle, M. Same or different? Insights on public perception and acceptance of carbon capture and storage or utilization in Germany. Energy Policy 2019, 125, 235–249. [Google Scholar] [CrossRef]
- Goulart, M.B.R.; Costa, P.V.M.d.; da Costa, A.M.; Miranda, A.C.O.; Mendes, A.B.; Ebecken, N.F.F.; Meneghini, J.R.; Nishimoto, K.; Assi, G.R.S. Technology readiness assessment of ultra-deep salt caverns for carbon capture and storage in Brazil. Int. J. Greenh. Gas Control 2020, 99, 103083. [Google Scholar] [CrossRef]
- L’Orange Seigo, S.; Dohle, S.; Siegrist, M. Public perception of carbon capture and storage (CCS): A review. Renew. Sustain. Energy Rev. 2014, 38, 848–863. [Google Scholar] [CrossRef]
- Tarkowski, R.; Luboń, K.; Tarkowski, S. Perception of climate changes and CCS technology—Results of surveys of the local community in the example of Tarnów region. Polityka Energ. 2014, 17, 85–98. (In Polish) [Google Scholar]
- Tarkowski, R.; Uliasz-Misiak, B.; Tarkowski, P. Storage of hydrogen, natural gas, and carbon dioxide—Geological and legal conditions. Int. J. Hydrogen Energy 2021, 46, 20010–20022. [Google Scholar] [CrossRef]
- Goodman Hanson, A.; Kutchko, B.; Lackey, G.; Gulliver, D.; Strazisar, B.R.; Tinker, K.A.; Wright, R.; Haeri, F.; Huerta, N.; Baek, S.; et al. Subsurface Hydrogen and Natural Gas Storage: State of Knowledge and Research Recommendations Report DOE/NETL-2022/3236; National Energy Technology Laboratory: Morgantown, WV, USA, 2022. [CrossRef]
- Labus, K.; Tarkowski, R. Modeling hydrogen–rock–brine interactions for the Jurassic reservoir and cap rocks from Polish Lowlands. Int. J. Hydrogen Energy 2022, 47, 10947–10962. [Google Scholar] [CrossRef]
- Tcvetkov, P.; Cherepovitsyn, A.; Fedoseev, S. Public perception of carbon capture and storage: A state-of-the-art overview. Heliyon 2019, 5, e02845. [Google Scholar] [CrossRef]
- McLaughlin, H.; Littlefield, A.A.; Menefee, M.; Kinzer, A.; Hull, T.; Sovacool, B.K.; Bazilian, M.D.; Kim, J.; Griffiths, S. Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world. Renew. Sustain. Energy Rev. 2023, 177, 113215. [Google Scholar] [CrossRef]
- Wojakowski, D.; Langhelle, O.; Assadi, M.; Nagy, S. Public acceptance of CCS/CCUS technology in onshore areas in NW Poland. Balt. Carbon Forum 2022, 1, 16. [Google Scholar] [CrossRef]
- Giers, M. Social Acceptance of CCUS Technology in Poland; WiseEuropa: Warsaw, Poland, 2024. (In Polish) [Google Scholar]
- Lefstad, L.; Allesson, J.; Busch, H.; Carton, W. Burying problems? Imaginaries of carbon capture and storage in Scandinavia. Energy Res. Soc. Sci. 2024, 113, 103564. [Google Scholar] [CrossRef]
- Oltra, C.; Sala, R.; Boso, À. The influence of information on individuals’ reactions to CCS technologies: Results from experimental online survey research. Greenh. Gases Sci. Technol. 2012, 2, 209–215. [Google Scholar] [CrossRef]
- Tokushige, K.; Akimoto, K.; Tomoda, T. Public acceptance and risk-benefit perception of CO2 geological storage for global warming mitigation in Japan. Mitig. Adapt. Strateg. Glob. Change 2007, 12, 1237–1251. [Google Scholar] [CrossRef]
- Ashworth, P.; Boughen, N.; Mayhew, M.; Millar, F. From research to action: Now we have to move on CCS communication. Int. J. Greenh. Gas Control 2010, 4, 426–433. [Google Scholar] [CrossRef]
- Jones, C.R.; Olfe-Kräutlein, B.; Naims, H.; Armstrong, K. The social acceptance of carbon dioxide utilisation: A review and research Agenda. Front. Energy Res. 2017, 5, 263955. [Google Scholar] [CrossRef]
- Mota-Nieto, J.; García-Meneses, P.M. A stakeholder-centred narrative exploration on carbon capture, utilisation and storage: A systems thinking and participatory approach. Energy Res. Soc. Sci. 2024, 113, 103563. [Google Scholar] [CrossRef]
- Witte, K. Social Acceptance of Carbon Capture and Storage (CCS) from Industrial Applications. Sustainability 2021, 13, 12278. [Google Scholar] [CrossRef]
- Zuch, M.; Ladenburg, J. Navigating the information pathway to carbon capture and storage acceptance: Patterns and insights from a literature review. Energy Res. Soc. Sci. 2023, 105, 103283. [Google Scholar] [CrossRef]
- Ha-Duong, M.; Nadaï, A.; Campos, A.S. A survey on the public perception of CCS in France. Int. J. Greenh. Gas Control 2009, 3, 633–640. [Google Scholar] [CrossRef]
- Dowd, A.M.; Itaoka, K.; Ashworth, P.; Saito, A.; de Best-Waldhober, M. Investigating the link between knowledge and perception of CO2 and CCS: An international study. Int. J. Greenh. Gas Control 2014, 28, 79–87. [Google Scholar] [CrossRef]
- Krevor, S.; de Coninck, H.; Gasda, S.E.; Ghaleigh, N.S.; de Gooyert, V.; Hajibeygi, H.; Juanes, R.; Neufeld, J.; Roberts, J.J.; Swennenhuis, F. Subsurface carbon dioxide and hydrogen storage for a sustainable energy future. Nat. Rev. Earth Environ. 2023, 4, 102–118. [Google Scholar] [CrossRef]
- Satterfield, T.; Nawaz, S.; St-Laurent, G.P. Exploring public acceptability of direct air carbon capture with storage: Climate urgency, moral hazards and perceptions of the ‘whole versus the parts’. Clim. Change 2023, 176, 14. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, X.; McAlinden, K.J. The effect of trust on people’s acceptance of CCS (carbon capture and storage) technologies: Evidence from a survey in the People’s Republic of China. Energy 2016, 96, 69–79. [Google Scholar] [CrossRef]
- Terwel, B.W.; Harinck, F.; Ellemers, N.; Daamen, D.D.L. Going beyond the properties of CO2 capture and storage (CCS) technology: How trust in stakeholders affects public acceptance of CCS. Int. J. Greenh. Gas Control 2011, 5, 181–188. [Google Scholar] [CrossRef]
- Schumann, D.; Duetschke, E.; Pietzner, K. Public Perception of CO2 Offshore Storage in Germany: Regional Differences and Determinants. Energy Procedia 2014, 63, 7096–7112. [Google Scholar] [CrossRef]
- Wojakowski, D.; Klimkowski, Ł.; Stopa, M. Communicating CC(U)S and UGS technologies: The case of deliberative group interviews in North-Western Poland. Int. J. Greenh. Gas Control 2024, 134, 104111. [Google Scholar] [CrossRef]
- Fischer, W. No CCS in Germany despite the CCS act? In Carbon Capture, Storage and Use; Technical, Economic, Environmental and Societal Perspectives; Springer: Cham, Switzerland, 2015; pp. 255–286. [Google Scholar] [CrossRef]
- Sharp, J.D.; Jaccard, M.K.; Keith, D.W. Anticipating public attitudes toward underground CO2 storage. Int. J. Greenh. Gas Control 2009, 3, 641–651. [Google Scholar] [CrossRef]
- Groenenberg, R.; Koornneef, J.; Sijm, J.; Janssen, G.; Morales-Espana, G.; van Stralen, J.; Hernandez-Serna, R.; Smekens, K.; Juez-Larré, J.; Goncalvez, C.; et al. Large-Scale Energy Storage in Salt Caverns and Depleted Gas Fields—Topsector Energie; TNO: Utrecht, The Netherlands, 2020. [Google Scholar]
- Bade, S.O.; Tomomewo, O.S.; Meenakshisundaram, A.; Ferron, P.; Oni, B.A. Economic, social, and regulatory challenges of green hydrogen production and utilization in the US: A review. Int. J. Hydrogen Energy 2024, 49, 314–335. [Google Scholar] [CrossRef]
- Horwacik, A. Social Impact of the Underground H2 Storage—Project Hystories. 2023. Available online: https://hystories.eu/wp-content/uploads/2023/04/Hystories_D6.4-Social-impact-of-the-underground-H2-storage.pdf (accessed on 10 January 2025).
- Ricci, M.; Bellaby, P.; Flynn, R. What do we know about public perceptions and acceptance of hydrogen? A critical review and new case study evidence. Int. J. Hydrogen Energy 2008, 33, 5868–5880. [Google Scholar] [CrossRef]
- Barbier, L.; Agnoletti, M.F. Are French people ready to accept hydrogen underground storage? An answer through the distance from object model. Int. J. Hydrogen Energy 2023, 48, 19792–19802. [Google Scholar] [CrossRef]
- Bernhardt, H.; Schneider, G.-S.; Kbb, D.; William, G.; Garner, S. Technical and Legal Requirements for Gas Storage Field Safety. In Proceedings of the 27th World Gas Conference, Washington, DC, USA, 25–29 June 2018; pp. 24–25. [Google Scholar]
- Van Thienen-Visser, K.; Hendriks, D.; Marsman, A.; Nepveu, M.; Groenenberg, R.; Wildenborg, T.; Van Duijne, H.; Den Hartogh, M.; Pinkse, T. Bow-tie risk assessment combining causes and effects applied to gas oil storage in an abandoned salt cavern. Eng. Geol. 2014, 168, 149–166. [Google Scholar] [CrossRef]
- Zaunbrecher, B.S.; Bexten, T.; Wirsum, M.; Ziefle, M. What is Stored, Why, and How? Mental Models, Knowledge, and Public Acceptance of Hydrogen Storage. Energy Procedia 2016, 99, 108–119. [Google Scholar] [CrossRef]
- Vechkinzova, E.; Steblyakova, L.P.; Roslyakova, N.; Omarova, B. Prospects for the Development of Hydrogen Energy: Overview of Global Trends and the Russian Market State. Energies 2022, 15, 8503. [Google Scholar] [CrossRef]
- Gordon, J.A.; Balta-Ozkan, N.; Nabavi, S.A. Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions. Appl. Energy 2023, 336, 120850. [Google Scholar] [CrossRef]
- Heinemann, N.; Alcalde, J.; Miocic, J.M.; Hangx, S.J.T.; Kallmeyer, J.; Ostertag-Henning, C.; Hassanpouryouzband, A.; Thaysen, E.M.; Strobel, G.J.; Schmidt-Hattenberger, C.; et al. Enabling large-scale hydrogen storage in porous media-the scientific challenges. Energy Environ. Sci. 2021, 14, 853–864. [Google Scholar] [CrossRef]
- Leng, G.; Yan, W.; Chen, Z.; Li, Z.; Liu, B.; Deng, P.; Zhang, C.; Liu, W.; Qi, H. Technical challenges and opportunities of hydrogen storage: A comprehensive review on different types of underground storage. J. Energy Storage 2025, 114, 115900. [Google Scholar] [CrossRef]
- Zeng, L.; Sarmadivaleh, M.; Saeedi, A.; Chen, Y.; Zhong, Z.; Xie, Q. Storage integrity during underground hydrogen storage in depleted gas reservoirs. Earth-Sci. Rev. 2023, 247, 104625. [Google Scholar] [CrossRef]
- Saeed, M.; Jadhawar, P.; Bagala, S. Geochemical Effects on Storage Gases and Reservoir Rock during Underground Hydrogen Storage: A Depleted North Sea Oil Reservoir Case Study. Hydrogen 2023, 4, 323–337. [Google Scholar] [CrossRef]
- Yekta, A.E.; Pichavant, M.; Audigane, P. Evaluation of geochemical reactivity of hydrogen in sandstone: Application to geological storage. Appl. Geochem. 2018, 95, 182–194. [Google Scholar] [CrossRef]
- Bo, Z.; Zeng, L.; Chen, Y.; Xie, Q. Geochemical reactions-induced hydrogen loss during underground hydrogen storage in sandstone reservoirs. Int. J. Hydrogen Energy 2021, 46, 19998–20009. [Google Scholar] [CrossRef]
- Hassannayebi, N.; Azizmohammadi, S.; De Lucia, M.; Ott, H. Underground hydrogen storage: Application of geochemical modelling in a case study in the Molasse Basin, Upper Austria. Environ. Earth Sci. 2019, 78, 177. [Google Scholar] [CrossRef]
- Hemme, C.; van Berk, W. Potential risk of H2S generation and release in salt cavern gas storage. J. Nat. Gas Sci. Eng. 2017, 47, 114–123. [Google Scholar] [CrossRef]
- Maury Fernandez, D.; Emadi, H.; Hussain, A.; Thiyagarajan, S.R. A holistic review on wellbore integrity challenges associated with underground hydrogen storage. Int. J. Hydrogen Energy 2024, 57, 240–262. [Google Scholar] [CrossRef]
- Elgaddafi, R.; Ahmed, R.; Shah, S. Corrosion of carbon steel in CO2 saturated brine at elevated temperatures. J. Pet. Sci. Eng. 2021, 196, 107638. [Google Scholar] [CrossRef]
- El-Sherik, A.M. Trends in Oil and Gas Corrosion Research and Technologies; Woodhead Publishing: Cambridge, UK, 2017; ISBN 9780081011058. [Google Scholar]
- Askari, M.; Aliofkhazraei, M.; Jafari, R.; Hamghalam, P.; Hajizadeh, A. Downhole corrosion inhibitors for oil and gas production—A review. Appl. Surf. Sci. Adv. 2021, 6, 100128. [Google Scholar] [CrossRef]
- Panfilov, M. Underground Storage of Hydrogen: In Situ Self-Organisation and Methane Generation. Transp. Porous Media 2010, 85, 841–865. [Google Scholar] [CrossRef]
- Muhammed, N.S.; Haq, M.B.; Al Shehri, D.A.; Al-Ahmed, A.; Rahman, M.M.; Zaman, E.; Iglauer, S. Hydrogen storage in depleted gas reservoirs: A comprehensive review. Fuel 2023, 337, 127032. [Google Scholar] [CrossRef]
- Reitenbach, V.; Ganzer, L.; Albrecht, D.; Hagemann, B. Influence of added hydrogen on underground gas storage: A review of key issues. Environ. Earth Sci. 2015, 73, 6927–6937. [Google Scholar] [CrossRef]
- Taiwo, G.O.; Tomomewo, O.S.; Oni, B.A. A comprehensive review of underground hydrogen storage: Insight into geological sites (mechanisms), economics, barriers, and future outlook. J. Energy Storage 2024, 90, 111844. [Google Scholar] [CrossRef]
- Schmidt, A.; Donsbach, W. Acceptance factors of hydrogen and their use by relevant stakeholders and the media. Int. J. Hydrogen Energy 2016, 41, 4509–4520. [Google Scholar] [CrossRef]
- Jafari Raad, S.M.; Leonenko, Y.; Hassanzadeh, H. Hydrogen storage in saline aquifers: Opportunities and challenges. Renew. Sustain. Energy Rev. 2022, 168, 112846. [Google Scholar] [CrossRef]
- Edlmann, K. Challenging perceptions of underground hydrogen storage. Nat. Rev. Earth Environ. 2024, 5, 478–480. [Google Scholar] [CrossRef]
- Galassi, C.M.; Papanikolaou, E.; Baraldi, D.; Funnemark, E.; Håland, E.; Engebo, A.; Haugom, G.P.; Jordan, T.; Tchouvelev, A.V. HIAD—Hydrogen incident and accident database. Int. J. Hydrogen Energy 2012, 37, 17351–17357. [Google Scholar] [CrossRef]
- Sprenkeling, M.; Geerdink, T.; Slob, A.; Geurts, A. Bridging Social and Technical Sciences: Introduction of the Societal Embeddedness Level. Energies 2022, 15, 6252. [Google Scholar] [CrossRef]
- Geerdink, T.; Sprenkeling, M.; Slob, A.; Puts, H. D3.1. Guideline Societal Embeddedness Assessment DigiMon; TNO: Utrecht, The Netherlands, 2020. [Google Scholar]
- Mueller, L. Carbon Capture, Utilization, and Storage: A Literature Synthesis and Bibliometric Analysis; Sciences Po Paris: Paris, France, 2024. [Google Scholar]
- Gianni, E.; Tyrologou, P.; Couto, N.; Carneiro, J.F.; Scholtzová, E.; Koukouzas, N. Underground hydrogen storage: The techno-economic perspective. Open Res. Eur. 2024, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Reed, M.S. Stakeholder participation for environmental management: A literature review. Biol. Conserv. 2008, 141, 2417–2431. [Google Scholar] [CrossRef]
- Undertaking, C.H.J. Strategic Research and Innovation Agenda 2021–2027; Clean Hydrogen Partnership: Brussels, Belgium, 2021. Available online: https://www.clean-hydrogen.europa.eu/about-us/key-documents/strategic-research-and-innovation-agenda_en (accessed on 8 February 2025).
- Rowe, G.; Frewer, L.J. A typology of public engagement mechanisms. Sci. Technol. Hum. Values 2005, 30, 251–290. [Google Scholar] [CrossRef]
- Boyd, A. Communicating about Carbon Capture and Storage. Oxf. Res. Encycl. Clim. Sci. 2017. Available online: https://oxfordre.com/climatescience/view/10.1093/acrefore/9780190228620.001.0001/acrefore-9780190228620-e-444 (accessed on 10 February 2025). [CrossRef]
- Interreg Europe. Regional Policies for Promoting Green Hydrogen; Interreg Europe: Lille, France, 2023. [Google Scholar]
- Aven, T. On Some Recent Definitions and Analysis Frameworks for Risk, Vulnerability, and Resilience. Risk Anal. 2011, 31, 515–522. [Google Scholar] [CrossRef]
- Ernesto, J.; Fuentes, Q.; Santos, D.M.F. Technical and Economic Viability of Underground Hydrogen Storage. Hydrogen 2023, 4, 975–1000. [Google Scholar] [CrossRef]
- Devine-Wright, P. Rethinking NIMBYism: The role of place attachment and place identity in explaining place-protective action. J. Community Appl. Soc. Psychol. 2009, 19, 426–441. [Google Scholar] [CrossRef]
- Europäische Union. Directive 2009/31/EC of the European Parliament and of the Council of 23 April 2009 on the geological storage of carbon dioxide. Off. J. Eur. Union 2009, 5, 114–135. [Google Scholar]
- Ziegler, M.S.; Forbes, S. Guidelines for Community Engagement in Carbon Dioxide Capture, Transport, and Storage Projects; World Resources Institute: Washington, DC, USA, 2010; Available online: http://pdf.wri.org/ccs_and_community_engagement.pdf (accessed on 8 February 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarkowski, R.; Uliasz-Misiak, B. Public Acceptance of the Underground Storage of Hydrogen: Lessons Learned from the Geological Storage of CO2. Energies 2025, 18, 1335. https://doi.org/10.3390/en18061335
Tarkowski R, Uliasz-Misiak B. Public Acceptance of the Underground Storage of Hydrogen: Lessons Learned from the Geological Storage of CO2. Energies. 2025; 18(6):1335. https://doi.org/10.3390/en18061335
Chicago/Turabian StyleTarkowski, Radosław, and Barbara Uliasz-Misiak. 2025. "Public Acceptance of the Underground Storage of Hydrogen: Lessons Learned from the Geological Storage of CO2" Energies 18, no. 6: 1335. https://doi.org/10.3390/en18061335
APA StyleTarkowski, R., & Uliasz-Misiak, B. (2025). Public Acceptance of the Underground Storage of Hydrogen: Lessons Learned from the Geological Storage of CO2. Energies, 18(6), 1335. https://doi.org/10.3390/en18061335